Skip to content

Commit

Permalink
Add cuDFInterface to work with cuDF GPU dataframes
Browse files Browse the repository at this point in the history
  • Loading branch information
philippjfr committed Sep 21, 2019
1 parent 5c4bf7b commit baa7e65
Show file tree
Hide file tree
Showing 2 changed files with 289 additions and 0 deletions.
6 changes: 6 additions & 0 deletions holoviews/core/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,12 @@
except ImportError:
pass

try:
from .cudf import cuDFInterface # noqa (Conditional API import)
datatypes.append('cuDF')
except ImportError:
pass

if 'array' not in datatypes:
datatypes.append('array')
if 'multitabular' not in datatypes:
Expand Down
283 changes: 283 additions & 0 deletions holoviews/core/data/cudf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
from __future__ import absolute_import

import sys
import warnings

try:
import itertools.izip as zip
except ImportError:
pass

import numpy as np

from .. import util
from ...dimension import dimension_name
from ..element import Element
from ...ndmapping import NdMapping, item_check, sorted_context
from .interface import DataError, Interface
from .pandas import PandasInterface


class cuDFInterface(PandasInterface):
"""
The cuDFInterface allows a Dataset objects to wrap a cuDF
DataFrame object. Using cuDF allows working with columnar
data on a GPU. Most operation leave the data in GPU memory,
however to plot the data it has to be loaded into memory.
The cuDFInterface covers almost the complete API exposed
by the PandasInterface with two notable exceptions:
1) Sorting is not supported and any attempt at sorting will
be ignored with an warning.
2) cuDF does not easily support adding a new column to an existing
dataframe unless it is a scalar, add_dimension will therefore
error when supplied a non-scalar value.
3) Not all functions can be easily applied to a dask dataframe so
some functions applied with aggregate and reduce will not work.
"""

datatype = 'cuDF'

types = ()

@classmethod
def loaded(cls):
return 'cudf' in sys.modules

@classmethod
def applies(cls, obj):
if not cls.loaded():
return False
import cudf
return isinstance(obj, (cudf.DataFrame, cudf.Series))

@classmethod
def init(cls, eltype, data, kdims, vdims):
import cudf

element_params = eltype.param.objects()
kdim_param = element_params['kdims']
vdim_param = element_params['vdims']
ncols = len(data.columns)

if isinstance(data, cudf.Series):
data = data.to_frame()

index_names = [data.index.name]
if index_names == [None]:
index_names = ['index']
if eltype._auto_indexable_1d and ncols == 1 and kdims is None:
kdims = list(index_names)

if isinstance(kdim_param.bounds[1], int):
ndim = min([kdim_param.bounds[1], len(kdim_param.default)])
else:
ndim = None
nvdim = vdim_param.bounds[1] if isinstance(vdim_param.bounds[1], int) else None
if kdims and vdims is None:
vdims = [c for c in data.columns if c not in kdims]
elif vdims and kdims is None:
kdims = [c for c in data.columns if c not in vdims][:ndim]
elif kdims is None:
kdims = list(data.columns[:ndim])
if vdims is None:
vdims = [d for d in data.columns[ndim:((ndim+nvdim) if nvdim else None)]
if d not in kdims]
elif kdims == [] and vdims is None:
vdims = list(data.columns[:nvdim if nvdim else None])

# Handle reset of index if kdims reference index by name
for kd in kdims:
kd = dimension_name(kd)
if kd in data.columns:
continue
if any(kd == ('index' if name is None else name)
for name in index_names):
data = data.reset_index()
break
if any(isinstance(d, (np.int64, int)) for d in kdims+vdims):
raise DataError("cudf DataFrame column names used as dimensions "
"must be strings not integers.", cls)

if kdims:
kdim = dimension_name(kdims[0])
if eltype._auto_indexable_1d and ncols == 1 and kdim not in data.columns:
data = data.copy()
data.insert(0, kdim, np.arange(len(data)))

for d in kdims+vdims:
d = dimension_name(d)
if len([c for c in data.columns if c == d]) > 1:
raise DataError('Dimensions may not reference duplicated DataFrame '
'columns (found duplicate %r columns). If you want to plot '
'a column against itself simply declare two dimensions '
'with the same name. '% d, cls)
return data, {'kdims':kdims, 'vdims':vdims}, {}


@classmethod
def range(cls, dataset, dimension):
column = dataset.data[dataset.get_dimension(dimension, strict=True).name]
if column.dtype.kind == 'O':
return np.NaN, np.NaN
else:
return (column.min(), column.max())


@classmethod
def values(
cls,
dataset,
dim,
expanded=True,
flat=True,
compute=True,
keep_index=False,
):
dim = dataset.get_dimension(dim, strict=True)
data = dataset.data[dim.name]
if not expanded:
data = data.unique()
return data.to_array() if compute else data
elif keep_index:
return data
elif compute:
return data.to_array()
return data


@classmethod
def groupby(cls, dataset, dimensions, container_type, group_type, **kwargs):
# Get dimensions information
dimensions = [dataset.get_dimension(d).name for d in dimensions]
kdims = [kdim for kdim in dataset.kdims if kdim not in dimensions]

# Update the kwargs appropriately for Element group types
group_kwargs = {}
group_type = dict if group_type == 'raw' else group_type
if issubclass(group_type, Element):
group_kwargs.update(util.get_param_values(dataset))
group_kwargs['kdims'] = kdims
group_kwargs.update(kwargs)

# Find all the keys along supplied dimensions
indices = [dataset.get_dimension_index(d) for d in dimensions]
keys = (tuple(dataset.iloc[i, d] for d in indices)
for i in range(len(dataset)))

# Iterate over the unique entries applying selection masks
grouped_data = []
for unique_key in util.unique_iterator(keys):
group_data = dataset.select(**dict(zip(dimensions, unique_key)))
group_data = group_type(group_data, **group_kwargs)
grouped_data.append((unique_key, group_data))

if issubclass(container_type, NdMapping):
with item_check(False), sorted_context(False):
return container_type(grouped_data, kdims=dimensions)
else:
return container_type(grouped_data)


@classmethod
def select_mask(cls, dataset, selection):
"""
Given a Dataset object and a dictionary with dimension keys and
selection keys (i.e tuple ranges, slices, sets, lists or literals)
return a boolean mask over the rows in the Dataset object that
have been selected.
"""
mask = None
for dim, sel in selection.items():
if isinstance(sel, tuple):
sel = slice(*sel)
arr = cls.values(dataset, dim, compute=False)
if util.isdatetime(arr) and util.pd:
try:
sel = util.parse_datetime_selection(sel)
except:
pass

new_masks = []
if isinstance(sel, slice):
with warnings.catch_warnings():
warnings.filterwarnings('ignore', r'invalid value encountered')
if sel.start is not None:
new_masks.append(sel.start <= arr)
if sel.stop is not None:
new_masks.append(arr < sel.stop)
new_mask = new_masks[0]
for imask in new_masks[1:]:
new_mask &= imask
elif isinstance(sel, (set, list)):
for v in sel:
new_masks.append(arr==v)
new_mask = new_masks[0]
for imask in new_masks[1:]:
new_mask |= imask
elif callable(sel):
new_mask = sel(arr)
else:
new_mask = arr == sel

if mask is None:
mask = new_mask
else:
mask &= new_mask
return mask


@classmethod
def select(cls, dataset, selection_mask=None, **selection):
df = dataset.data
if selection_mask is None:
selection_mask = cls.select_mask(dataset, selection)

indexed = cls.indexed(dataset, selection)
df = df[selection_mask]
if indexed and len(df) == 1 and len(dataset.vdims) == 1:
return df[dataset.vdims[0].name].iloc[0]
return df


@classmethod
def aggregate(cls, dataset, dimensions, function, **kwargs):
data = dataset.data
cols = [d.name for d in dataset.kdims if d in dimensions]
vdims = dataset.dimensions('value', label='name')
reindexed = data[cols+vdims]
agg = function.__name__
if agg in ('amin', 'amax'):
agg = agg[1:]
if not hasattr(data, agg):
raise ValueError('%s aggregation is not supported on cudf DataFrame.' % agg)
if len(dimensions):
grouped = reindexed.groupby(cols, sort=False)
df = getattr(grouped, agg)().reset_index()
else:
agg = getattr(reindexed, agg)()
data = dict(((col, [v]) for col, v in zip(agg.index, agg.to_array())))
df = util.pd.DataFrame(data, columns=list(agg.index))

dropped = []
for vd in vdims:
if vd not in df.columns:
dropped.append(vd)
return df, dropped


@classmethod
def sort(cls, dataset, by=[], reverse=False):
raise NotImplementedError('Sorting is not supported by cudf DataFrames.')


@classmethod
def dframe(cls, dataset, dimensions):
if dimensions:
return dataset.data[dimensions].to_pandas()
else:
return dataset.data.to_pandas()


Interface.register(cuDFInterface)

0 comments on commit baa7e65

Please sign in to comment.