Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Large timeseries #1205

Closed
wants to merge 20 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,10 @@ repos:
args: [hvplot]
files: hvplot/
- repo: https://github.com/hoxbro/clean_notebook
rev: v0.1.10
rev: v0.1.14
hooks:
- id: clean-notebook
args: [-i, tags]
- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
hooks:
Expand Down
4 changes: 4 additions & 0 deletions doc/user_guide/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,9 @@ rather than Matplotlib.
* `Timeseries Data <Timeseries_Data.html>`_
Using hvPlot when working with timeseries data.

* `Large Timeseries Data <Large_Timeseries.html>`_
Using hvPlot when working with large timeseries data.

* `Statistical Plots <Statistical_Plots.html>`_
A number of statistical plot types modeled on the pandas.plotting module.

Expand Down Expand Up @@ -117,5 +120,6 @@ rather than Matplotlib.
Network Graphs <NetworkX>
Geographic Data <Geographic_Data>
Timeseries Data <Timeseries_Data>
Large Timeseries <Large_Timeseries>
Statistical Plots <Statistical_Plots>
Pandas API <Pandas_API>
14 changes: 14 additions & 0 deletions examples/getting_started/interactive.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"id": "bcbd5216-59d4-4de9-b576-9727ce9b6435",
"metadata": {},
"source": [
"hvPlot isn't only a plotting library, it is dedicated to make data exploration easier. In this guide you will see how it can help you to get better control over your data pipelines. We define a *data pipeline* as a series of commands that *transform* some data, such as aggregating, filtering, reshaping, renaming, etc. A data pipeline may include a *load* step that will provide the input data to the pipeline, e.g. reading the data from a data base. \n",
Expand All @@ -14,6 +15,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "4ff4e131-e046-49a1-85ed-01151299adf8",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -23,6 +25,7 @@
},
{
"cell_type": "markdown",
"id": "6ece0608-9102-40a6-b649-ee6e46e263b9",
"metadata": {},
"source": [
"We load a dataset and get a handle on its unique *air* variable."
Expand All @@ -31,6 +34,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "f34daeaa-bb75-4642-bfbe-c95973e78c5f",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -41,6 +45,7 @@
},
{
"cell_type": "markdown",
"id": "4c105059-2f7d-44ec-ad73-9f65eef4cbc7",
"metadata": {},
"source": [
"We want to better understand the temporal evolution of the air temperature over different latitudes compared to a baseline. The data pipeline we build includes:\n",
Expand All @@ -57,6 +62,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "899aa9be-054c-4238-80f3-8706678d7346",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -78,6 +84,7 @@
},
{
"cell_type": "markdown",
"id": "66063fd1-32b0-40dd-b2e5-bdb1ed595347",
"metadata": {},
"source": [
"Without `.interactive()` we would manually change the values of `LATITUDE` and `ROLLING_WINDOW` to see how they affect the pipeline output. Instead we create two widgets with the values we expect them to take, we are basically declaring beforehand our parameter space. To create widgets we import [Panel](https://panel.holoviz.org) and pick two appropriate widgets from its [Reference Gallery](https://panel.holoviz.org/reference/index.html#widgets)."
Expand All @@ -86,6 +93,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "03ff2aed-65d2-470a-a401-1c6f65fd5d05",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -97,6 +105,7 @@
},
{
"cell_type": "markdown",
"id": "9a575b14-9973-4308-8b1c-c17b8d8b415e",
"metadata": {},
"source": [
"Now we instantiate an *Interactive* object by calling `.interactive()` on our data. This object mirrors the underlying object API, it accepts all of its natural operations. We replace the data by the interactive object in the pipeline, and replace the constant parameters by the widgets we have just created."
Expand All @@ -105,6 +114,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "dddaf71e-1f62-46c8-a35f-48dd04d3006a",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -114,6 +124,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "d660ad41-24bd-4236-8d57-268187bc7ac7",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -132,6 +143,7 @@
},
{
"cell_type": "markdown",
"id": "41a8c760-d2d2-4de4-91dd-7cb0bfc7bd86",
"metadata": {},
"source": [
"You can see that now the pipeline when rendered doesn't only consist of its output, it also includes the widgets that control it. Change the widgets' values and observe how the output dynamically updates.\n",
Expand All @@ -144,6 +156,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "b3ac92e6-4041-44e1-9997-6d36c10457b1",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -154,6 +167,7 @@
},
{
"cell_type": "markdown",
"id": "0606ad0e-2917-4bfa-b8ab-152ce2b8b837",
"metadata": {},
"source": [
"For information on using `.interactive()` take a look at the [User Guide](../user_guide/Interactive.ipynb)."
Expand Down
5 changes: 5 additions & 0 deletions examples/reference/pandas/andrewscurves.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "c3152ae5-a7e8-4a87-946c-0622095a1a1a",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -11,6 +12,7 @@
},
{
"cell_type": "markdown",
"id": "3ff5961b-3576-4b7b-9b97-fcabc717aafa",
"metadata": {},
"source": [
"Andrews curves provides a mechanism for visualising clusters of multivariate data.\n",
Expand All @@ -27,6 +29,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "36e7d95b-2810-4efa-ae16-291f63be1e0a",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -38,6 +41,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "96e78c6a-92ee-4820-ae8a-13220e2f9870",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -47,6 +51,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "27a21f83-4d3e-43a5-82e2-74f99cb7cfae",
"metadata": {},
"outputs": [],
"source": [
Expand Down
6 changes: 6 additions & 0 deletions examples/reference/pandas/lagplot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "0a497b8d-a35b-48b1-9e1a-e2acc907ff14",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -13,13 +14,15 @@
},
{
"cell_type": "markdown",
"id": "992bc493-914a-4dbb-80cd-6d7ed12a3076",
"metadata": {},
"source": [
"Lag plots are most commonly used to look for patterns in time series data."
]
},
{
"cell_type": "markdown",
"id": "f6d461a5-9c12-4042-8971-ad528af9977d",
"metadata": {},
"source": [
"Given the following time series:"
Expand All @@ -28,6 +31,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "16743185-fa7f-4854-90fc-f284907ad809",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -40,6 +44,7 @@
},
{
"cell_type": "markdown",
"id": "8ed87848-6a86-4025-bd7e-7900a69706c9",
"metadata": {},
"source": [
"A lag plot with `lag=1` returns:"
Expand All @@ -48,6 +53,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "d14609df-a88a-44fc-85b0-426e139d9b4b",
"metadata": {},
"outputs": [],
"source": [
Expand Down
5 changes: 5 additions & 0 deletions examples/reference/pandas/parallelcoordinates.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "1289b546-07a6-49f9-a21f-b2bd891b10b1",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -11,6 +12,7 @@
},
{
"cell_type": "markdown",
"id": "7c867b2b-d891-483d-8b80-12103ad72b91",
"metadata": {},
"source": [
"Parallel coordinates are a common way of visualizing and analyzing high-dimensional datasets.\n",
Expand All @@ -21,6 +23,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "538eafff-24af-41ef-941d-c81499c88a39",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -32,6 +35,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "7e25f890-5e01-4358-b4a9-f0183647dd58",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -41,6 +45,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "eb4a6aec-36e0-43f6-b776-8cad6d926428",
"metadata": {},
"outputs": [],
"source": [
Expand Down
Loading
Loading