Code for the paper: "DiffImp: Efficient Diffusion Model for Probabilistic Time Series Imputation with Bidirectional Mamba Backbone"
Python==3.10.15
torch==2.3.1
cuda==11.8
mamba_ssm==2.2.2
causal_conv1d==1.4.0
First modify the config in ./config
train for specific dataset:
python train.py --config path_to_your_config
inference for specific dataset:
python inference.py --config path_to_your_config
If you want to build your own imputer, modify ./imputers
according to the imputer files.
For mujoco dataset:
python train.py --config ./config/config_bissm2_mujoco_90_large.json
For ablation studies:
modify line 16
in train.py
and line 9
in inference.py
to corresponding imputers in .\imputers\