Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix to_json ValueError and remove pandas pin #6201

Merged
merged 5 commits into from
Sep 5, 2023
Merged

Conversation

albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Aug 31, 2023

This PR fixes the root cause of the issue:

This PR also removes the temporary pin of pandas introduced by:

Note that for orient in ['records', 'values'], index value is ignored but

  • in pandas < 2.1.0, a ValueError is raised if not index and orient not in ['split', 'table']
    • for orient = 'records', we need index = True
    • default index value is True
  • in pandas = 2.1.0, a ValueError is raised if index is True and orient in ['records', 'values']
    • for orient = 'records', we need index = False or None
    • default index value is None

This PR fixes the issue by not passing index and thus using default index value (valid for all pandas versions), unless orient is 'split' or 'table' (where we pass index = False, as it was done before this fix).

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006852 / 0.011353 (-0.004501) 0.004195 / 0.011008 (-0.006813) 0.095008 / 0.038508 (0.056500) 0.073469 / 0.023109 (0.050360) 0.350170 / 0.275898 (0.074272) 0.394309 / 0.323480 (0.070829) 0.004391 / 0.007986 (-0.003595) 0.003432 / 0.004328 (-0.000896) 0.072849 / 0.004250 (0.068599) 0.058595 / 0.037052 (0.021543) 0.372335 / 0.258489 (0.113846) 0.410616 / 0.293841 (0.116775) 0.034477 / 0.128546 (-0.094069) 0.009426 / 0.075646 (-0.066220) 0.329262 / 0.419271 (-0.090009) 0.057941 / 0.043533 (0.014408) 0.358624 / 0.255139 (0.103485) 0.413803 / 0.283200 (0.130604) 0.025845 / 0.141683 (-0.115837) 1.684289 / 1.452155 (0.232134) 1.791567 / 1.492716 (0.298850)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.222731 / 0.018006 (0.204724) 0.511615 / 0.000490 (0.511126) 0.004163 / 0.000200 (0.003963) 0.000088 / 0.000054 (0.000033)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.033260 / 0.037411 (-0.004152) 0.091685 / 0.014526 (0.077159) 0.105655 / 0.176557 (-0.070901) 0.167973 / 0.737135 (-0.569163) 0.105458 / 0.296338 (-0.190880)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.441789 / 0.215209 (0.226580) 4.404803 / 2.077655 (2.327148) 2.163739 / 1.504120 (0.659620) 1.956828 / 1.541195 (0.415633) 2.042183 / 1.468490 (0.573693) 0.552221 / 4.584777 (-4.032556) 3.951769 / 3.745712 (0.206057) 3.591983 / 5.269862 (-1.677878) 2.225058 / 4.565676 (-2.340619) 0.064528 / 0.424275 (-0.359747) 0.008403 / 0.007607 (0.000796) 0.528830 / 0.226044 (0.302786) 5.233686 / 2.268929 (2.964757) 2.681156 / 55.444624 (-52.763468) 2.261188 / 6.876477 (-4.615289) 2.470037 / 2.142072 (0.327964) 0.661793 / 4.805227 (-4.143434) 0.150138 / 6.500664 (-6.350527) 0.068663 / 0.075469 (-0.006807)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.463086 / 1.841788 (-0.378701) 21.408232 / 8.074308 (13.333924) 15.521718 / 10.191392 (5.330326) 0.164587 / 0.680424 (-0.515837) 0.021035 / 0.534201 (-0.513166) 0.445466 / 0.579283 (-0.133817) 0.462489 / 0.434364 (0.028125) 0.517733 / 0.540337 (-0.022604) 0.724242 / 1.386936 (-0.662694)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007117 / 0.011353 (-0.004236) 0.004230 / 0.011008 (-0.006778) 0.072186 / 0.038508 (0.033678) 0.076758 / 0.023109 (0.053648) 0.452606 / 0.275898 (0.176708) 0.491872 / 0.323480 (0.168392) 0.005989 / 0.007986 (-0.001996) 0.003611 / 0.004328 (-0.000717) 0.072642 / 0.004250 (0.068392) 0.058985 / 0.037052 (0.021933) 0.463414 / 0.258489 (0.204925) 0.497538 / 0.293841 (0.203697) 0.036325 / 0.128546 (-0.092221) 0.009814 / 0.075646 (-0.065832) 0.078745 / 0.419271 (-0.340527) 0.054308 / 0.043533 (0.010775) 0.468210 / 0.255139 (0.213071) 0.476434 / 0.283200 (0.193234) 0.023683 / 0.141683 (-0.118000) 1.706457 / 1.452155 (0.254302) 1.775855 / 1.492716 (0.283139)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.241599 / 0.018006 (0.223592) 0.483859 / 0.000490 (0.483370) 0.006432 / 0.000200 (0.006233) 0.000177 / 0.000054 (0.000123)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034723 / 0.037411 (-0.002688) 0.104420 / 0.014526 (0.089894) 0.121071 / 0.176557 (-0.055486) 0.174899 / 0.737135 (-0.562237) 0.119587 / 0.296338 (-0.176751)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.492731 / 0.215209 (0.277522) 4.898621 / 2.077655 (2.820967) 2.710931 / 1.504120 (1.206811) 2.513889 / 1.541195 (0.972694) 2.578073 / 1.468490 (1.109583) 0.548318 / 4.584777 (-4.036459) 4.048603 / 3.745712 (0.302891) 3.637654 / 5.269862 (-1.632208) 2.263682 / 4.565676 (-2.301994) 0.065786 / 0.424275 (-0.358489) 0.008119 / 0.007607 (0.000512) 0.578693 / 0.226044 (0.352649) 5.780619 / 2.268929 (3.511691) 3.224625 / 55.444624 (-52.220000) 2.838750 / 6.876477 (-4.037726) 2.970276 / 2.142072 (0.828204) 0.654423 / 4.805227 (-4.150805) 0.148696 / 6.500664 (-6.351969) 0.066469 / 0.075469 (-0.009000)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.574772 / 1.841788 (-0.267015) 21.822356 / 8.074308 (13.748048) 16.504127 / 10.191392 (6.312735) 0.183357 / 0.680424 (-0.497067) 0.022759 / 0.534201 (-0.511442) 0.453746 / 0.579283 (-0.125537) 0.447037 / 0.434364 (0.012673) 0.536562 / 0.540337 (-0.003775) 0.731063 / 1.386936 (-0.655873)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Aug 31, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008542 / 0.011353 (-0.002811) 0.005481 / 0.011008 (-0.005527) 0.100122 / 0.038508 (0.061614) 0.078968 / 0.023109 (0.055858) 0.403751 / 0.275898 (0.127853) 0.457559 / 0.323480 (0.134079) 0.006152 / 0.007986 (-0.001834) 0.003805 / 0.004328 (-0.000523) 0.072787 / 0.004250 (0.068536) 0.054794 / 0.037052 (0.017741) 0.419815 / 0.258489 (0.161326) 0.437453 / 0.293841 (0.143612) 0.044641 / 0.128546 (-0.083905) 0.013755 / 0.075646 (-0.061892) 0.374683 / 0.419271 (-0.044589) 0.071442 / 0.043533 (0.027909) 0.395814 / 0.255139 (0.140675) 0.439042 / 0.283200 (0.155842) 0.034596 / 0.141683 (-0.107087) 1.655056 / 1.452155 (0.202902) 1.826410 / 1.492716 (0.333694)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.278667 / 0.018006 (0.260661) 0.617354 / 0.000490 (0.616864) 0.004111 / 0.000200 (0.003911) 0.000138 / 0.000054 (0.000083)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025905 / 0.037411 (-0.011506) 0.084721 / 0.014526 (0.070195) 0.099737 / 0.176557 (-0.076819) 0.163016 / 0.737135 (-0.574119) 0.095104 / 0.296338 (-0.201234)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.531589 / 0.215209 (0.316380) 5.455303 / 2.077655 (3.377649) 2.495112 / 1.504120 (0.990992) 2.234139 / 1.541195 (0.692944) 2.295090 / 1.468490 (0.826599) 0.777627 / 4.584777 (-3.807150) 5.053069 / 3.745712 (1.307357) 4.488715 / 5.269862 (-0.781147) 2.775991 / 4.565676 (-1.789686) 0.094175 / 0.424275 (-0.330100) 0.008681 / 0.007607 (0.001074) 0.668174 / 0.226044 (0.442130) 6.631876 / 2.268929 (4.362948) 3.118055 / 55.444624 (-52.326569) 2.480355 / 6.876477 (-4.396122) 2.706643 / 2.142072 (0.564571) 0.927173 / 4.805227 (-3.878054) 0.217385 / 6.500664 (-6.283279) 0.067110 / 0.075469 (-0.008359)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.517926 / 1.841788 (-0.323861) 21.420546 / 8.074308 (13.346238) 21.108266 / 10.191392 (10.916874) 0.222449 / 0.680424 (-0.457975) 0.027969 / 0.534201 (-0.506232) 0.459484 / 0.579283 (-0.119799) 0.582629 / 0.434364 (0.148265) 0.520971 / 0.540337 (-0.019366) 0.694270 / 1.386936 (-0.692666)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008257 / 0.011353 (-0.003096) 0.004511 / 0.011008 (-0.006497) 0.075031 / 0.038508 (0.036523) 0.070526 / 0.023109 (0.047416) 0.445595 / 0.275898 (0.169697) 0.512312 / 0.323480 (0.188832) 0.005933 / 0.007986 (-0.002052) 0.003814 / 0.004328 (-0.000515) 0.073553 / 0.004250 (0.069302) 0.058174 / 0.037052 (0.021121) 0.472307 / 0.258489 (0.213818) 0.519679 / 0.293841 (0.225838) 0.046027 / 0.128546 (-0.082520) 0.011757 / 0.075646 (-0.063889) 0.084883 / 0.419271 (-0.334388) 0.056476 / 0.043533 (0.012943) 0.475608 / 0.255139 (0.220469) 0.507588 / 0.283200 (0.224388) 0.031661 / 0.141683 (-0.110022) 1.673183 / 1.452155 (0.221028) 1.736836 / 1.492716 (0.244120)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.350887 / 0.018006 (0.332881) 0.589796 / 0.000490 (0.589306) 0.023066 / 0.000200 (0.022867) 0.000106 / 0.000054 (0.000052)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030764 / 0.037411 (-0.006647) 0.116967 / 0.014526 (0.102441) 0.102760 / 0.176557 (-0.073796) 0.167690 / 0.737135 (-0.569445) 0.111350 / 0.296338 (-0.184988)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.584565 / 0.215209 (0.369356) 5.898081 / 2.077655 (3.820426) 2.770374 / 1.504120 (1.266254) 2.467519 / 1.541195 (0.926324) 2.463319 / 1.468490 (0.994829) 0.794294 / 4.584777 (-3.790483) 5.272285 / 3.745712 (1.526573) 4.514830 / 5.269862 (-0.755032) 2.937259 / 4.565676 (-1.628417) 0.093702 / 0.424275 (-0.330574) 0.008012 / 0.007607 (0.000405) 0.772371 / 0.226044 (0.546327) 7.574941 / 2.268929 (5.306013) 3.710965 / 55.444624 (-51.733659) 2.927964 / 6.876477 (-3.948513) 3.256036 / 2.142072 (1.113964) 1.051649 / 4.805227 (-3.753578) 0.203055 / 6.500664 (-6.297609) 0.081072 / 0.075469 (0.005603)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.574251 / 1.841788 (-0.267537) 22.340801 / 8.074308 (14.266493) 20.497769 / 10.191392 (10.306377) 0.228725 / 0.680424 (-0.451699) 0.029095 / 0.534201 (-0.505106) 0.452460 / 0.579283 (-0.126823) 0.586419 / 0.434364 (0.152055) 0.571237 / 0.540337 (0.030900) 0.745069 / 1.386936 (-0.641867)

@albertvillanova albertvillanova merged commit 0b54cbd into main Sep 5, 2023
13 checks passed
@albertvillanova albertvillanova deleted the remove-pandas-pin branch September 5, 2023 10:58
@github-actions
Copy link

github-actions bot commented Sep 5, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006529 / 0.011353 (-0.004824) 0.004062 / 0.011008 (-0.006946) 0.083712 / 0.038508 (0.045204) 0.072378 / 0.023109 (0.049269) 0.358779 / 0.275898 (0.082881) 0.387216 / 0.323480 (0.063736) 0.004038 / 0.007986 (-0.003948) 0.003316 / 0.004328 (-0.001013) 0.065207 / 0.004250 (0.060956) 0.054439 / 0.037052 (0.017386) 0.370689 / 0.258489 (0.112200) 0.411008 / 0.293841 (0.117167) 0.031133 / 0.128546 (-0.097413) 0.008600 / 0.075646 (-0.067047) 0.287753 / 0.419271 (-0.131518) 0.051845 / 0.043533 (0.008312) 0.360327 / 0.255139 (0.105188) 0.394791 / 0.283200 (0.111591) 0.025139 / 0.141683 (-0.116544) 1.488151 / 1.452155 (0.035996) 1.556776 / 1.492716 (0.064059)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.209462 / 0.018006 (0.191456) 0.459168 / 0.000490 (0.458678) 0.006037 / 0.000200 (0.005837) 0.000079 / 0.000054 (0.000025)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.028444 / 0.037411 (-0.008967) 0.082974 / 0.014526 (0.068448) 0.094919 / 0.176557 (-0.081638) 0.151875 / 0.737135 (-0.585260) 0.096143 / 0.296338 (-0.200195)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.402675 / 0.215209 (0.187466) 4.014787 / 2.077655 (1.937133) 2.015793 / 1.504120 (0.511673) 1.838976 / 1.541195 (0.297782) 1.931733 / 1.468490 (0.463243) 0.489435 / 4.584777 (-4.095342) 3.581662 / 3.745712 (-0.164050) 3.315392 / 5.269862 (-1.954469) 2.053369 / 4.565676 (-2.512307) 0.057749 / 0.424275 (-0.366526) 0.007720 / 0.007607 (0.000113) 0.483388 / 0.226044 (0.257343) 4.820798 / 2.268929 (2.551870) 2.544264 / 55.444624 (-52.900361) 2.170513 / 6.876477 (-4.705963) 2.416976 / 2.142072 (0.274903) 0.588351 / 4.805227 (-4.216876) 0.136988 / 6.500664 (-6.363676) 0.062294 / 0.075469 (-0.013175)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.263807 / 1.841788 (-0.577980) 19.888202 / 8.074308 (11.813894) 14.352977 / 10.191392 (4.161585) 0.167200 / 0.680424 (-0.513224) 0.018449 / 0.534201 (-0.515752) 0.393262 / 0.579283 (-0.186021) 0.407854 / 0.434364 (-0.026510) 0.455852 / 0.540337 (-0.084485) 0.629024 / 1.386936 (-0.757912)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006642 / 0.011353 (-0.004710) 0.004041 / 0.011008 (-0.006967) 0.065823 / 0.038508 (0.027315) 0.076810 / 0.023109 (0.053701) 0.397680 / 0.275898 (0.121782) 0.430104 / 0.323480 (0.106624) 0.006035 / 0.007986 (-0.001951) 0.003389 / 0.004328 (-0.000939) 0.066056 / 0.004250 (0.061806) 0.054222 / 0.037052 (0.017170) 0.397964 / 0.258489 (0.139475) 0.439277 / 0.293841 (0.145436) 0.032394 / 0.128546 (-0.096152) 0.008586 / 0.075646 (-0.067060) 0.072538 / 0.419271 (-0.346734) 0.048346 / 0.043533 (0.004813) 0.399631 / 0.255139 (0.144492) 0.418684 / 0.283200 (0.135484) 0.022570 / 0.141683 (-0.119113) 1.519788 / 1.452155 (0.067633) 1.581457 / 1.492716 (0.088740)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.243443 / 0.018006 (0.225436) 0.453095 / 0.000490 (0.452606) 0.009940 / 0.000200 (0.009740) 0.000121 / 0.000054 (0.000066)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032293 / 0.037411 (-0.005118) 0.091681 / 0.014526 (0.077155) 0.103729 / 0.176557 (-0.072827) 0.156361 / 0.737135 (-0.580775) 0.105034 / 0.296338 (-0.191305)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.427761 / 0.215209 (0.212551) 4.266044 / 2.077655 (2.188390) 2.285161 / 1.504120 (0.781041) 2.118652 / 1.541195 (0.577457) 2.203469 / 1.468490 (0.734979) 0.494587 / 4.584777 (-4.090190) 3.676706 / 3.745712 (-0.069006) 3.252478 / 5.269862 (-2.017383) 2.027432 / 4.565676 (-2.538245) 0.057856 / 0.424275 (-0.366419) 0.007279 / 0.007607 (-0.000328) 0.502767 / 0.226044 (0.276723) 5.031409 / 2.268929 (2.762480) 2.741767 / 55.444624 (-52.702858) 2.408480 / 6.876477 (-4.467997) 2.607193 / 2.142072 (0.465121) 0.590787 / 4.805227 (-4.214440) 0.133633 / 6.500664 (-6.367031) 0.061195 / 0.075469 (-0.014274)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.342824 / 1.841788 (-0.498964) 20.137195 / 8.074308 (12.062887) 14.986743 / 10.191392 (4.795351) 0.168218 / 0.680424 (-0.512206) 0.020209 / 0.534201 (-0.513992) 0.397446 / 0.579283 (-0.181837) 0.427496 / 0.434364 (-0.006868) 0.475058 / 0.540337 (-0.065279) 0.648439 / 1.386936 (-0.738497)

albertvillanova added a commit that referenced this pull request Oct 24, 2023
* Unpin pandas

* Fix JsonDatasetWriter

* Fix typo in docstring

* Leave default index for orient different from split or table

* Pass index within to_json_kwargs when relevant
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants