Skip to content

Commit

Permalink
Remove CogVideoX mentions from single file docs; Test updates (#9444)
Browse files Browse the repository at this point in the history
* remove mentions from single file

* update tests

* update
  • Loading branch information
a-r-r-o-w authored Sep 17, 2024
1 parent bb1b0fa commit ba06124
Show file tree
Hide file tree
Showing 4 changed files with 9 additions and 18 deletions.
4 changes: 0 additions & 4 deletions docs/source/en/api/loaders/single_file.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,6 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
## Supported pipelines

- [`CogVideoXPipeline`]
- [`CogVideoXImageToVideoPipeline`]
- [`CogVideoXVideoToVideoPipeline`]
- [`StableDiffusionPipeline`]
- [`StableDiffusionImg2ImgPipeline`]
- [`StableDiffusionInpaintPipeline`]
Expand Down Expand Up @@ -52,7 +49,6 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`UNet2DConditionModel`]
- [`StableCascadeUNet`]
- [`AutoencoderKL`]
- [`AutoencoderKLCogVideoX`]
- [`ControlNetModel`]
- [`SD3Transformer2DModel`]
- [`FluxTransformer2DModel`]
Expand Down
9 changes: 3 additions & 6 deletions tests/pipelines/cogvideo/test_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False

def get_dummy_components(self):
torch.manual_seed(0)
Expand All @@ -71,8 +72,8 @@ def get_dummy_components(self):
time_embed_dim=2,
text_embed_dim=32, # Must match with tiny-random-t5
num_layers=1,
sample_width=16, # latent width: 2 -> final width: 16
sample_height=16, # latent height: 2 -> final height: 16
sample_width=2, # latent width: 2 -> final width: 16
sample_height=2, # latent height: 2 -> final height: 16
sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
patch_size=2,
temporal_compression_ratio=4,
Expand Down Expand Up @@ -280,10 +281,6 @@ def test_vae_tiling(self, expected_diff_max: float = 0.2):
"VAE tiling should not affect the inference results",
)

@unittest.skip("xformers attention processor does not exist for CogVideoX")
def test_xformers_attention_forwardGenerator_pass(self):
pass

def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
Expand Down
5 changes: 3 additions & 2 deletions tests/pipelines/cogvideo/test_cogvideox_image2video.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,8 +269,9 @@ def test_vae_tiling(self, expected_diff_max: float = 0.3):
generator_device = "cpu"
components = self.get_dummy_components()

# The reason to modify it this way is because I2V Transformer limits the generation to resolutions.
# See the if-statement on "self.use_learned_positional_embeddings"
# The reason to modify it this way is because I2V Transformer limits the generation to resolutions used during initalization.
# This limitation comes from using learned positional embeddings which cannot be generated on-the-fly like sincos or RoPE embeddings.
# See the if-statement on "self.use_learned_positional_embeddings" in diffusers/models/embeddings.py
components["transformer"] = CogVideoXTransformer3DModel.from_config(
components["transformer"].config,
sample_height=16,
Expand Down
9 changes: 3 additions & 6 deletions tests/pipelines/cogvideo/test_cogvideox_video2video.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False

def get_dummy_components(self):
torch.manual_seed(0)
Expand All @@ -65,8 +66,8 @@ def get_dummy_components(self):
time_embed_dim=2,
text_embed_dim=32, # Must match with tiny-random-t5
num_layers=1,
sample_width=16, # latent width: 2 -> final width: 16
sample_height=16, # latent height: 2 -> final height: 16
sample_width=2, # latent width: 2 -> final width: 16
sample_height=2, # latent height: 2 -> final height: 16
sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9
patch_size=2,
temporal_compression_ratio=4,
Expand Down Expand Up @@ -285,10 +286,6 @@ def test_vae_tiling(self, expected_diff_max: float = 0.2):
"VAE tiling should not affect the inference results",
)

@unittest.skip("xformers attention processor does not exist for CogVideoX")
def test_xformers_attention_forwardGenerator_pass(self):
pass

def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
Expand Down

0 comments on commit ba06124

Please sign in to comment.