Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multilingual NLI Tasks #329

Merged
merged 43 commits into from
Sep 30, 2024
Merged
Changes from all commits
Commits
Show all changes
43 commits
Select commit Hold shift + click to select a range
5c69eb0
add multilignaul dynamic generative metrics
hynky1999 Sep 5, 2024
39c4220
Merge branch 'main' into geneartive_dynamic_metrics
hynky1999 Sep 5, 2024
2a5cdca
Merge branch 'geneartive_dynamic_metrics' into config_templates
hynky1999 Sep 5, 2024
2df9a08
draft
hynky1999 Sep 6, 2024
95729ee
finish multichoice config
hynky1999 Sep 9, 2024
3aa0579
Merge branch 'main' into geneartive_dynamic_metrics
hynky1999 Sep 9, 2024
b8f90a9
update tokenizers + install nltk reqs
hynky1999 Sep 9, 2024
f5a8717
use punkt tab
hynky1999 Sep 9, 2024
227f572
Update src/lighteval/utils/imports.py
hynky1999 Sep 13, 2024
d80b3ba
Update src/lighteval/metrics/normalizations.py
hynky1999 Sep 13, 2024
532bdad
fix imports
Sep 13, 2024
75f7ac5
remove unused import
Sep 13, 2024
f99e330
Merge branch 'main' into geneartive_dynamic_metrics
NathanHB Sep 13, 2024
92daf90
Merge branch 'main' into geneartive_dynamic_metrics
clefourrier Sep 14, 2024
f2a801d
Merge branch 'main' into geneartive_dynamic_metrics
NathanHB Sep 17, 2024
91d9d4f
finish implementation of templates + move stuff around
Sep 23, 2024
9356cc6
resolve nits
Sep 23, 2024
0fbc731
when in rome do as romans do (handle error messages the same way)
Sep 23, 2024
fa1fa83
fix utils
hynky1999 Sep 23, 2024
db36e16
Merge branch 'geneartive_dynamic_metrics' into config_templates
hynky1999 Sep 23, 2024
44aeecf
nicers tests + fix them
hynky1999 Sep 23, 2024
2bff963
nicer todo
hynky1999 Sep 23, 2024
3c9eb21
add nice doscrings 📃
hynky1999 Sep 23, 2024
4216ae2
add even more docstring
hynky1999 Sep 23, 2024
d8f56b8
nit
hynky1999 Sep 23, 2024
f26e88c
fix test
hynky1999 Sep 23, 2024
111d615
add multilingual to dev group
hynky1999 Sep 24, 2024
7ca4239
merge nli, add languagees to literals
hynky1999 Sep 25, 2024
22eeddb
translation literals
hynky1999 Sep 25, 2024
7faaa8a
add nli
hynky1999 Sep 25, 2024
ba44fe9
add rcb + chinese nli
hynky1999 Sep 26, 2024
2d09256
Merge branch 'geneartive_dynamic_metrics' into config_templates
hynky1999 Sep 26, 2024
7324e89
Merge branch 'config_templates' into multilnag_nli_tasks
hynky1999 Sep 26, 2024
ca865bd
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
1cc1187
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
d64251f
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
9806fab
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
35d7e6d
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
e560738
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
99524c5
Update src/lighteval/tasks/multilingual/tasks.py
hynky1999 Sep 30, 2024
150c76f
add two new tasks + docs
hynky1999 Sep 30, 2024
4e6100d
Merge branch 'multilnag_nli_tasks' of github.com:huggingface/lighteva…
hynky1999 Sep 30, 2024
7b561fe
Merge remote-tracking branch 'origin/main' into multilnag_nli_tasks
hynky1999 Sep 30, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
324 changes: 324 additions & 0 deletions src/lighteval/tasks/multilingual/tasks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,324 @@
# MIT License

# Copyright (c) 2024 The HuggingFace Team

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from langcodes import Language as LangCodeLanguage
from langcodes import standardize_tag

from lighteval.metrics.dynamic_metrics import loglikelihood_acc_metric
from lighteval.metrics.normalizations import LogProbTokenNorm
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.templates.nli import get_nli_prompt_function
from lighteval.tasks.templates.utils.formulation import (
CFFormulation,
HybridFormulation,
MCFFormulation,
)
from lighteval.utils.language import Language


# ------------------------------- NLI Tasks ------------------------------- #
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could be nice to add just a bit of intro doc at the top of the file to explain what these tasks are overall about (= what is NLI, which datasets are used, etc)

# NLI (Natural Language Inference) tasks involve determining the logical relationship
# between two given sentences: a premise and a hypothesis. The goal is to classify
# whether the hypothesis is entailed by, contradicts, or is neutral with respect to
# the premise. After our inspection we found the neutral label to be quite ambiguous
# and decided to exclude it. But you can easily add it by modifying the adapters


# The XNLI dataset is a multilingual variant of MultiNLI
# https://aclanthology.org/D18-1269/
xnli_tasks = [
LightevalTaskConfig(
name=f"xnli_{language.value}_{formulation.name.lower()}",
suite=["lighteval"],
metric=[loglikelihood_acc_metric(normalization=LogProbTokenNorm())],
prompt_function=get_nli_prompt_function(
language=language,
adapter=lambda line: {
"premise": line["premise"],
"hypothesis": line["hypothesis"],
# Since we ignore the neutral label
"gold_idx": {0: 0, 2: 1}[line["label"]],
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
hf_filter=lambda line: line["label"] in [0, 2],
hf_repo="facebook/xnli",
hf_subset=standardize_tag(language.value),
evaluation_splits=["validation"],
few_shots_split="train",
)
for language in [
Language.ARABIC,
Language.ENGLISH,
Language.FRENCH,
Language.SPANISH,
Language.BULGARIAN,
Language.GERMAN,
Language.GREEK,
Language.ENGLISH,
Language.FRENCH,
Language.HINDI,
Language.RUSSIAN,
Language.SWAHILI,
Language.THAI,
Language.TURKISH,
Language.URDU,
Language.VIETNAMESE,
Language.CHINESE,
]
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]

# Improvement on XNLI with better translation, from our experience models tend to
# perform better on XNLI2.0 than XNLI
# https://arxiv.org/abs/2301.06527
xnli2_tasks = [
LightevalTaskConfig(
name=f"xnli2.0_{language.value}_{formulation.name.lower()}",
suite=["lighteval"],
metric=[loglikelihood_acc_metric(normalization=LogProbTokenNorm())],
prompt_function=get_nli_prompt_function(
language=language,
adapter=lambda line: {
"premise": line["premise"],
"hypothesis": line["hypothesis"],
# Since we ignore the neutral label
"gold_idx": {0: 0, 2: 1}[line["label"]],
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
hf_filter=lambda line: line["label"] in [0, 2],
hf_repo=f"Harsit/xnli2.0_train_{LangCodeLanguage(standardize_tag(language.value)).language_name().lower()}",
clefourrier marked this conversation as resolved.
Show resolved Hide resolved
hf_subset="default",
evaluation_splits=["train"],
)
for language in [
Language.ENGLISH,
Language.FRENCH,
Language.PUNJABI,
Language.GUJARATI,
Language.KANNADA,
Language.ASSAMESE,
Language.BENGALI,
Language.MARATHI,
Language.SANSKRIT,
Language.TAMIL,
Language.GERMAN,
Language.ENGLISH,
Language.URDU,
Language.VIETNAMESE,
Language.TURKISH,
Language.THAI,
Language.SWAHILI,
Language.SPANISH,
Language.RUSSIAN,
Language.HINDI,
Language.GREEK,
Language.CHINESE,
Language.BULGARIAN,
Language.ARABIC,
# Theoretically also: Bhojpuri, Gujarati, Odiya
]
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]

# Another variant of XNLI, with emphasis on Indic languages
# https://arxiv.org/abs/2204.08776
xnli_indic_tasks = [
LightevalTaskConfig(
name=f"indicnxnli_{language.value}_{formulation.name.lower()}",
suite=["lighteval"],
prompt_function=get_nli_prompt_function(
language=language,
adapter=lambda line: {
"premise": line["premise"],
"hypothesis": line["hypothesis"],
# Since we ignore the neutral label
"gold_idx": {0: 0, 2: 1}[line["label"]],
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
hf_repo="Divyanshu/indicxnli",
hf_subset=standardize_tag(language.value),
# Ignore neutral
hf_filter=lambda x: int(x["label"]) in [0, 2],
evaluation_splits=["validation"],
few_shots_split="train",
few_shots_select=None,
generation_size=-1,
metric=[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
],
)
for language in [
Language.ASSAMESE,
Language.BENGALI,
Language.GUJARATI,
Language.HINDI,
Language.KANNADA,
Language.MALAYALAM,
Language.MARATHI,
Language.ORIYA,
Language.PUNJABI,
Language.TAMIL,
Language.TELUGU,
]
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]

# PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification
# This dataset contains paraphrase identification pairs in multiple languages.
# It's derived from PAWS (Paraphrase Adversaries from Word Scrambling) and
# We treat paraphrase as entailment and non-paraphrase as contradiction
# https://arxiv.org/abs/1908.11828

paws_x_tasks = [
LightevalTaskConfig(
name=f"pawsx_{language.value}_{formulation.name.lower()}",
suite=("lighteval",),
prompt_function=get_nli_prompt_function(
language=language,
adapter=lambda line: {
"premise": line["sentence1"],
"hypothesis": line["sentence2"],
# Since we ignore the neutral label
"gold_idx": int(line["label"]),
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
hf_repo="google-research-datasets/paws-x",
hf_subset=standardize_tag(language.value),
evaluation_splits=("test",),
few_shots_split="train",
metric=[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
],
)
for language in [
Language.GERMAN,
Language.ENGLISH,
Language.SPANISH,
Language.FRENCH,
Language.JAPANESE,
Language.KOREAN,
Language.CHINESE,
]
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]

# Russian Commitment Bank (RCB) is a large-scale NLI dataset with Russian sentences,
# collected from the web and crowdsourcing.
# https://arxiv.org/abs/2401.04531
rcb_tasks = [
LightevalTaskConfig(
name=f"rcb_{Language.RUSSIAN.value}_{formulation.name.lower()}",
prompt_function=get_nli_prompt_function(
language=Language.RUSSIAN,
adapter=lambda line: {
"premise": line["inputs"]["premise"],
"hypothesis": line["inputs"]["hypothesis"],
# Since we ignore the neutral label
"gold_idx": int(line["outputs"]) - 1,
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
suite=("lighteval",),
hf_repo="ai-forever/MERA",
hf_subset="rcb",
# Ignore neutral label
hf_filter=lambda x: int(x["outputs"] or "0") in [1, 2],
evaluation_splits=("train", "validation"),
metric=[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
],
)
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]

# Native Chinese NLI dataset based.
# https://arxiv.org/pdf/2010.05444
# We find this benchmark to have really good signal compared to other Chinese NLI
ocnli_tasks = [
LightevalTaskConfig(
name=f"ocnli_{Language.CHINESE.value}_{formulation.name.lower()}",
prompt_function=get_nli_prompt_function(
language=Language.CHINESE,
adapter=lambda line: {
"premise": line["sentence1"],
"hypothesis": line["sentence2"],
# Since we ignore the neutral label
"gold_idx": {1: 0, 2: 1}[line["label"]],
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
suite=("lighteval",),
hf_repo="clue/clue",
hf_subset="ocnli",
# Only keep the positive and negative examples
hf_filter=lambda x: int(x["label"]) in [1, 2],
evaluation_splits=("validation",),
few_shots_split="train",
metric=[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
],
)
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]

# https://arxiv.org/abs/2004.05986
# Native Chinese NLI dataset based on MNLI approach (Machine Translated)
cmnli_tasks = [
LightevalTaskConfig(
name=f"cmnli_{Language.CHINESE.value}_{formulation.name.lower()}",
prompt_function=get_nli_prompt_function(
language=Language.CHINESE,
adapter=lambda line: {
"premise": line["sentence1"],
"hypothesis": line["sentence2"],
# Since we ignore the neutral label
"gold_idx": {"entailment": 0, "contradiction": 1}[line["label"]],
},
relations=["entailment", "contradiction"],
formulation=formulation,
),
suite=("lighteval",),
hf_repo="fenffef/cmnli",
hf_subset="default",
hf_filter=lambda x: x["label"] in ["entailment", "contradiction"],
# Only keep the positive and negative examples
evaluation_splits=("validation",),
few_shots_split="train",
metric=[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
],
)
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]


TASKS_TABLE = [*xnli_tasks, *xnli2_tasks, *xnli_indic_tasks, *paws_x_tasks, *rcb_tasks, *ocnli_tasks, *cmnli_tasks]
Loading