Skip to content

Commit

Permalink
Merge pull request #866 from xanlsh/master
Browse files Browse the repository at this point in the history
Rework how PreTrainedModel.from_pretrained handles its arguments
  • Loading branch information
thomwolf authored Jul 23, 2019
2 parents 6070b55 + 4fb56c7 commit 368670a
Showing 1 changed file with 45 additions and 12 deletions.
57 changes: 45 additions & 12 deletions pytorch_transformers/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def save_pretrained(self, save_directory):
self.to_json_file(output_config_file)

@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *input, **kwargs):
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r""" Instantiate a PretrainedConfig from a pre-trained model configuration.
Params:
Expand All @@ -91,20 +91,33 @@ def from_pretrained(cls, pretrained_model_name_or_path, *input, **kwargs):
**cache_dir**: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
**return_unused_kwargs**: (`optional`) bool:
- If False, then this function returns just the final configuration object.
- If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes:
ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
**kwargs**: (`optional`) dict:
Dictionnary of key, values to update the configuration object after loading.
Can be used to override selected configuration parameters.
Dictionary of key/value pairs with which to update the configuration object after loading.
- The values in kwargs of any keys which are configuration attributes will be used
to override the loaded values.
- Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples::
>>> config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
>>> config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
>>> config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json')
>>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True)
>>> config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
>>> assert config.output_attention == True
>>> config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True,
>>> foo=False, return_unused_kwargs=True)
>>> assert config.output_attention == True
>>> assert unused_kwargs == {'foo': False}
"""
cache_dir = kwargs.pop('cache_dir', None)
return_unused_kwargs = kwargs.pop('return_unused_kwargs', False)

if pretrained_model_name_or_path in cls.pretrained_config_archive_map:
config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path]
Expand Down Expand Up @@ -148,7 +161,10 @@ def from_pretrained(cls, pretrained_model_name_or_path, *input, **kwargs):
kwargs.pop(key, None)

logger.info("Model config %s", config)
return config
if return_unused_kwargs:
return config, kwargs
else:
return config

@classmethod
def from_dict(cls, json_object):
Expand Down Expand Up @@ -305,7 +321,7 @@ def save_pretrained(self, save_directory):
torch.save(model_to_save.state_dict(), output_model_file)

@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""Instantiate a pretrained pytorch model from a pre-trained model configuration.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are desactivated)
Expand All @@ -322,6 +338,8 @@ def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
provided as `config` argument. This loading option is slower than converting the TensorFlow
checkpoint in a PyTorch model using the provided conversion scripts and loading
the PyTorch model afterwards.
**model_args**: (`optional`) Sequence:
All remaning positional arguments will be passed to the underlying model's __init__ function
**config**: an optional configuration for the model to use instead of an automatically loaded configuation.
Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with a `shortcut name` of a pre-trained model), or
Expand All @@ -337,8 +355,17 @@ def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
**output_loading_info**: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
**kwargs**: (`optional`) dict:
Dictionnary of key, values to update the configuration object after loading.
Can be used to override selected configuration parameters. E.g. ``output_attention=True``
Dictionary of key, values to update the configuration object after loading.
Can be used to override selected configuration parameters. E.g. ``output_attention=True``.
- If a configuration is provided with `config`, **kwargs will be directly passed
to the underlying model's __init__ method.
- If a configuration is not provided, **kwargs will be first passed to the pretrained
model configuration class loading function (`PretrainedConfig.from_pretrained`).
Each key of **kwargs that corresponds to a configuration attribute
will be used to override said attribute with the supplied **kwargs value.
Remaining keys that do not correspond to any configuration attribute will
be passed to the underlying model's __init__ function.
Examples::
Expand All @@ -359,7 +386,13 @@ def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):

# Load config
if config is None:
config = cls.config_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
config, model_kwargs = cls.config_class.from_pretrained(
pretrained_model_name_or_path, *model_args,
cache_dir=cache_dir, return_unused_kwargs=True,
**kwargs
)
else:
model_kwargs = kwargs

# Load model
if pretrained_model_name_or_path in cls.pretrained_model_archive_map:
Expand Down Expand Up @@ -400,7 +433,7 @@ def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
archive_file, resolved_archive_file))

# Instantiate model.
model = cls(config)
model = cls(config, *model_args, **model_kwargs)

if state_dict is None and not from_tf:
state_dict = torch.load(resolved_archive_file, map_location='cpu')
Expand Down Expand Up @@ -530,7 +563,7 @@ def forward(self, hidden_states, start_states=None, start_positions=None, p_mask
**start_states**: ``torch.LongTensor`` of shape identical to hidden_states
hidden states of the first tokens for the labeled span.
**start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)``
position of the first token for the labeled span:
position of the first token for the labeled span:
**p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)``
Mask of invalid position such as query and special symbols (PAD, SEP, CLS)
1.0 means token should be masked.
Expand Down Expand Up @@ -717,7 +750,7 @@ class SequenceSummary(nn.Module):
- 'attn' => Not implemented now, use multi-head attention
summary_use_proj: Add a projection after the vector extraction
summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default
summary_first_dropout: Add a dropout before the projection and activation
summary_last_dropout: Add a dropout after the projection and activation
"""
Expand Down

0 comments on commit 368670a

Please sign in to comment.