All URIs are relative to https://base.manager.iblai.app
Method | HTTP request | Description |
---|---|---|
ai_finetuning_v1_org_user_datasets_create | POST /api/ai-finetuning/v1/org/{org}/user/{username}/datasets/ | |
ai_finetuning_v1_org_user_datasets_destroy | DELETE /api/ai-finetuning/v1/org/{org}/user/{username}/datasets/{id}/ | |
ai_finetuning_v1_org_user_datasets_list | GET /api/ai-finetuning/v1/org/{org}/user/{username}/datasets/ | |
ai_finetuning_v1_org_user_datasets_partial_update | PATCH /api/ai-finetuning/v1/org/{org}/user/{username}/datasets/{id}/ | |
ai_finetuning_v1_org_user_datasets_retrieve | GET /api/ai-finetuning/v1/org/{org}/user/{username}/datasets/{id}/ | |
ai_finetuning_v1_org_user_datasets_update | PUT /api/ai-finetuning/v1/org/{org}/user/{username}/datasets/{id}/ | |
ai_finetuning_v1_org_user_trainings_create | POST /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/ | |
ai_finetuning_v1_org_user_trainings_destroy | DELETE /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/{id}/ | |
ai_finetuning_v1_org_user_trainings_finetuned_models_retrieve | GET /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/finetuned-models/ | |
ai_finetuning_v1_org_user_trainings_list | GET /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/ | |
ai_finetuning_v1_org_user_trainings_partial_update | PATCH /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/{id}/ | |
ai_finetuning_v1_org_user_trainings_retrieve | GET /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/{id}/ | |
ai_finetuning_v1_org_user_trainings_update | PUT /api/ai-finetuning/v1/org/{org}/user/{username}/trainings/{id}/ |
DataSetCreate ai_finetuning_v1_org_user_datasets_create(org, username, data_set_create)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.data_set_create import DataSetCreate
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
org = 'org_example' # str |
username = 'username_example' # str |
data_set_create = iblai.DataSetCreate() # DataSetCreate |
try:
api_response = api_instance.ai_finetuning_v1_org_user_datasets_create(org, username, data_set_create)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_datasets_create:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_datasets_create: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
org | str | ||
username | str | ||
data_set_create | DataSetCreate |
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
201 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ai_finetuning_v1_org_user_datasets_destroy(id, org, username)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this data set.
org = 'org_example' # str |
username = 'username_example' # str |
try:
api_instance.ai_finetuning_v1_org_user_datasets_destroy(id, org, username)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_datasets_destroy: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this data set. | |
org | str | ||
username | str |
void (empty response body)
- Content-Type: Not defined
- Accept: Not defined
Status code | Description | Response headers |
---|---|---|
204 | No response body | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
PaginatedDataSetList ai_finetuning_v1_org_user_datasets_list(org, username, date_created=date_created, num_data_points=num_data_points, ordering=ordering, page=page, page_size=page_size, retry_attempts=retry_attempts, search=search, status=status)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.paginated_data_set_list import PaginatedDataSetList
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
org = 'org_example' # str |
username = 'username_example' # str |
date_created = '2013-10-20T19:20:30+01:00' # datetime | (optional)
num_data_points = 56 # int | (optional)
ordering = 'ordering_example' # str | Which field to use when ordering the results. (optional)
page = 56 # int | A page number within the paginated result set. (optional)
page_size = 56 # int | Number of results to return per page. (optional)
retry_attempts = 56 # int | (optional)
search = 'search_example' # str | A search term. (optional)
status = 'status_example' # str | * `pending` - Pending * `processing` - Processing * `completed` - Completed * `failed` - Failed (optional)
try:
api_response = api_instance.ai_finetuning_v1_org_user_datasets_list(org, username, date_created=date_created, num_data_points=num_data_points, ordering=ordering, page=page, page_size=page_size, retry_attempts=retry_attempts, search=search, status=status)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_datasets_list:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_datasets_list: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
org | str | ||
username | str | ||
date_created | datetime | [optional] | |
num_data_points | int | [optional] | |
ordering | str | Which field to use when ordering the results. | [optional] |
page | int | A page number within the paginated result set. | [optional] |
page_size | int | Number of results to return per page. | [optional] |
retry_attempts | int | [optional] | |
search | str | A search term. | [optional] |
status | str | * `pending` - Pending * `processing` - Processing * `completed` - Completed * `failed` - Failed | [optional] |
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
DataSet ai_finetuning_v1_org_user_datasets_partial_update(id, org, username, patched_data_set=patched_data_set)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.data_set import DataSet
from iblai.models.patched_data_set import PatchedDataSet
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this data set.
org = 'org_example' # str |
username = 'username_example' # str |
patched_data_set = iblai.PatchedDataSet() # PatchedDataSet | (optional)
try:
api_response = api_instance.ai_finetuning_v1_org_user_datasets_partial_update(id, org, username, patched_data_set=patched_data_set)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_datasets_partial_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_datasets_partial_update: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this data set. | |
org | str | ||
username | str | ||
patched_data_set | PatchedDataSet | [optional] |
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
DataSet ai_finetuning_v1_org_user_datasets_retrieve(id, org, username)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.data_set import DataSet
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this data set.
org = 'org_example' # str |
username = 'username_example' # str |
try:
api_response = api_instance.ai_finetuning_v1_org_user_datasets_retrieve(id, org, username)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_datasets_retrieve:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_datasets_retrieve: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this data set. | |
org | str | ||
username | str |
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
DataSet ai_finetuning_v1_org_user_datasets_update(id, org, username, data_set)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.data_set import DataSet
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this data set.
org = 'org_example' # str |
username = 'username_example' # str |
data_set = iblai.DataSet() # DataSet |
try:
api_response = api_instance.ai_finetuning_v1_org_user_datasets_update(id, org, username, data_set)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_datasets_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_datasets_update: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this data set. | |
org | str | ||
username | str | ||
data_set | DataSet |
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
TrainingCreate ai_finetuning_v1_org_user_trainings_create(org, username, training_create)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.training_create import TrainingCreate
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
org = 'org_example' # str |
username = 'username_example' # str |
training_create = iblai.TrainingCreate() # TrainingCreate |
try:
api_response = api_instance.ai_finetuning_v1_org_user_trainings_create(org, username, training_create)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_trainings_create:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_create: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
org | str | ||
username | str | ||
training_create | TrainingCreate |
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
201 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ai_finetuning_v1_org_user_trainings_destroy(id, org, username)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this training.
org = 'org_example' # str |
username = 'username_example' # str |
try:
api_instance.ai_finetuning_v1_org_user_trainings_destroy(id, org, username)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_destroy: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this training. | |
org | str | ||
username | str |
void (empty response body)
- Content-Type: Not defined
- Accept: Not defined
Status code | Description | Response headers |
---|---|---|
204 | No response body | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
Training ai_finetuning_v1_org_user_trainings_finetuned_models_retrieve(org, username)
Retrieves a paginated list of completed fine-tuned models, excluding those without a fine-tuned model. Filtering and pagination is allowed. NB: This is only a helper endpoint. The same functionality can be achieved with the appropriate filters using the training list endpoint. Returns: Response: A paginated response containing the serialized fine-tuned models.
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.training import Training
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
org = 'org_example' # str |
username = 'username_example' # str |
try:
api_response = api_instance.ai_finetuning_v1_org_user_trainings_finetuned_models_retrieve(org, username)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_trainings_finetuned_models_retrieve:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_finetuned_models_retrieve: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
org | str | ||
username | str |
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
PaginatedTrainingList ai_finetuning_v1_org_user_trainings_list(org, username, base_model_name=base_model_name, dataset=dataset, date_created=date_created, fine_tuned_model=fine_tuned_model, last_modified=last_modified, ordering=ordering, page=page, page_size=page_size, preprocess_dataset=preprocess_dataset, provider=provider, search=search, status=status)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.paginated_training_list import PaginatedTrainingList
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
org = 'org_example' # str |
username = 'username_example' # str |
base_model_name = 'base_model_name_example' # str | (optional)
dataset = 'dataset_example' # str | (optional)
date_created = '2013-10-20T19:20:30+01:00' # datetime | (optional)
fine_tuned_model = 'fine_tuned_model_example' # str | (optional)
last_modified = '2013-10-20T19:20:30+01:00' # datetime | (optional)
ordering = 'ordering_example' # str | Which field to use when ordering the results. (optional)
page = 56 # int | A page number within the paginated result set. (optional)
page_size = 56 # int | Number of results to return per page. (optional)
preprocess_dataset = True # bool | (optional)
provider = 'provider_example' # str | * `openai` - Openai (optional)
search = 'search_example' # str | A search term. (optional)
status = 'status_example' # str | * `pending` - Pending * `processing` - Processing * `completed` - Completed * `cancelled` - Cancelled * `failed` - Failed (optional)
try:
api_response = api_instance.ai_finetuning_v1_org_user_trainings_list(org, username, base_model_name=base_model_name, dataset=dataset, date_created=date_created, fine_tuned_model=fine_tuned_model, last_modified=last_modified, ordering=ordering, page=page, page_size=page_size, preprocess_dataset=preprocess_dataset, provider=provider, search=search, status=status)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_trainings_list:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_list: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
org | str | ||
username | str | ||
base_model_name | str | [optional] | |
dataset | str | [optional] | |
date_created | datetime | [optional] | |
fine_tuned_model | str | [optional] | |
last_modified | datetime | [optional] | |
ordering | str | Which field to use when ordering the results. | [optional] |
page | int | A page number within the paginated result set. | [optional] |
page_size | int | Number of results to return per page. | [optional] |
preprocess_dataset | bool | [optional] | |
provider | str | * `openai` - Openai | [optional] |
search | str | A search term. | [optional] |
status | str | * `pending` - Pending * `processing` - Processing * `completed` - Completed * `cancelled` - Cancelled * `failed` - Failed | [optional] |
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
TrainingCreate ai_finetuning_v1_org_user_trainings_partial_update(id, org, username, patched_training_create=patched_training_create)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.patched_training_create import PatchedTrainingCreate
from iblai.models.training_create import TrainingCreate
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this training.
org = 'org_example' # str |
username = 'username_example' # str |
patched_training_create = iblai.PatchedTrainingCreate() # PatchedTrainingCreate | (optional)
try:
api_response = api_instance.ai_finetuning_v1_org_user_trainings_partial_update(id, org, username, patched_training_create=patched_training_create)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_trainings_partial_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_partial_update: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this training. | |
org | str | ||
username | str | ||
patched_training_create | PatchedTrainingCreate | [optional] |
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
Training ai_finetuning_v1_org_user_trainings_retrieve(id, org, username)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.training import Training
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this training.
org = 'org_example' # str |
username = 'username_example' # str |
try:
api_response = api_instance.ai_finetuning_v1_org_user_trainings_retrieve(id, org, username)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_trainings_retrieve:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_retrieve: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this training. | |
org | str | ||
username | str |
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
TrainingCreate ai_finetuning_v1_org_user_trainings_update(id, org, username, training_create)
Mixin that includes the StudentTokenAuthentication and IsPlatformAdmin
- Api Key Authentication (PlatformApiKeyAuthentication):
import iblai
from iblai.models.training_create import TrainingCreate
from iblai.rest import ApiException
from pprint import pprint
# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.
# The APIs use bearer tokens for authentication with a prefix of: `Api-Key`
# You can generate an authenticated client using the following helper method
client = get_platform_api_client(
host="https://base.manager.iblai.app",
key=os.environ["API_KEY"]
)
# Create an instance of the API class
api_instance = iblai.AiFinetuningApi(api_client)
id = 'id_example' # str | A UUID string identifying this training.
org = 'org_example' # str |
username = 'username_example' # str |
training_create = iblai.TrainingCreate() # TrainingCreate |
try:
api_response = api_instance.ai_finetuning_v1_org_user_trainings_update(id, org, username, training_create)
print("The response of AiFinetuningApi->ai_finetuning_v1_org_user_trainings_update:\n")
pprint(api_response)
except Exception as e:
print("Exception when calling AiFinetuningApi->ai_finetuning_v1_org_user_trainings_update: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
id | str | A UUID string identifying this training. | |
org | str | ||
username | str | ||
training_create | TrainingCreate |
- Content-Type: application/json, application/x-www-form-urlencoded, multipart/form-data
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]