Skip to content

Commit

Permalink
Merge pull request #1619 from idaholab/yoshrk-dss-validation_pp
Browse files Browse the repository at this point in the history
Adding DSS capabilities
  • Loading branch information
yoshiurr-INL authored Dec 6, 2021
2 parents 2ac653d + f81f692 commit 9d8db47
Show file tree
Hide file tree
Showing 21 changed files with 1,457 additions and 55 deletions.
2 changes: 1 addition & 1 deletion doc/theory_manual/Makefile
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
SRCFILE = raven_theory_manual
LATEX_FLAGS=-shell-escape
GUIDE_FILES = raven_theory_manual.tex statisticalAnalysis.tex forwardSampling.tex adaptiveSampling.tex dataMining.tex reducedOrderModeling.tex ravenStructure.tex introduction.tex ../version.tex
GUIDE_FILES = raven_theory_manual.tex statisticalAnalysis.tex forwardSampling.tex adaptiveSampling.tex dataMining.tex reducedOrderModeling.tex ravenStructure.tex introduction.tex dssPostProcessor.tex ../version.tex
MAKE_DIR = $(shell pwd)

#all: raven_theory_manual.pdf
Expand Down
113 changes: 113 additions & 0 deletions doc/theory_manual/dssPostProcessor.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
\section{Dynamical System Scaling}
\label{sec:dssdoc}

The DSS approach to system scaling is based on transforming the typical view of processes to a special coordinate system in terms of the parameter of interest and its agents of change \cite{DSS2015}.
By parameterizing using a time term that will be introduced later in this section, data reproduced can be converted to the special three coordinate system (also called the phase space)
and form a geometry with curves along the surface containing invariant and intrinsic properties. The remainder of this section is a review of DSS theory introduced in publications
by Reyes \cite{DSS2015,Reyes2015,Martin2019} and is used in this analysis for FR scaling. The parameter of interest is defined to be a conserved quantity within a control volume:
\begin{equation}
\label{eq_1}
\beta(t)=\frac{1}{\Psi_{0}}\iiint_{V}{\psi\left(\vec{x},t\right)}dV
\end{equation}
$\beta$ is defined as the volume integral of the time and space dependent conserved quantity $\psi$ normalized by a time-independent value, $\Psi_{0}$, that characterizes the process. The agents of change are defined as the first derivative of the normalized parameter of interest:
\begin{equation}
\label{eq_2}
\omega=\frac{1}{\Psi_{0}}\frac{d}{dt}\iiint_{V}{\psi\left(\vec{x},t\right)}dV=\iiint_{V}{\left(\phi_{v}+\phi_{f}\right)}dV+\iint_{A}{\left(\vec{j}\cdot\vec{n}\right)}dA-\iint_{A}{\psi\left(\vec{v}-\vec{v}_{s}\cdot\vec{n}dA\right)}dA
\end{equation}
The change is categorized into three components; volumetric, surface, and quantity transport. The agents of change is also the sum of the individual agent of change:
\begin{equation}
\omega=\frac{1}{\Psi_{0}}\frac{d}{dt}\iiint_{V}{\psi\left(\vec{x},t\right)}dV=\sum^{n}_{i=1}{\omega_{i}}
\end{equation}
The relation of $\omega$ and $\beta$ is the following:
\begin{equation}
\label{eq_3}
\omega(t)=\left.\frac{d\beta}{dt}\right|_{t}=\sum^{n}_{i=1}{\omega_{i}}
\end{equation}
Where $\omega$ is the first derivative of reference time. As defined in Einstein and Infeld, time is a value stepping in constant increments \cite{Einstein1966}. The process dependent term in DSS is called process time:
\begin{equation}
\label{eq_4}
\tau(t)=\frac{\beta(t)}{\omega(t)}
\end{equation}
To measure the progression difference between reference time and process time in respect to reference time, the idea of temporal displacement rate (D) is adopted:
\begin{equation}
\label{eq_5}
D=\frac{d\tau-dt}{dt}=-\frac{\beta}{\omega^{2}}\frac{d\omega}{dt}
\end{equation}
The interval of process time is:
\begin{equation}
\label{eq_8}
d\tau=\tau_{s}=\left(1+D\right)dt
\end{equation}
Applying the process action to normalize the phase space coordinates gives the following normalized terms:
\begin{equation}
\label{eq_10}
\tilde{\Omega}=\omega\tau_{s},\qquad \tilde{\beta}=\beta,\qquad \tilde{t}=\frac{t}{\tau_{s}},\qquad \tilde{\tau}=\frac{\tau}{\tau_{s}},\qquad
\tilde{D}=D
\end{equation}
The scaling relation between the prototype and model can be defined both for $\beta$ and $\omega$ and represents the scaling of the parameter of interest and the corresponding agents of change (or frequency given from the units of per time):
\begin{equation}
\label{eq_11}
\lambda_{A}=\frac{\beta_{M}}{\beta_{P}},\qquad \lambda_{B}=\frac{\omega_{M}}{\omega_{P}}
\end{equation}
The subscripts $M$ and $P$ stand for the model and prototype. Applying these scaling ratios to equations (\ref{eq_4}), (\ref{eq_5}), and (\ref{eq_10}) provides the scaling ratios for other parameters as well:
\begin{equation}
\label{eq_12}
\frac{t_{M}}{t_{P}}=\frac{\lambda_{A}}{\lambda_{B}},\qquad \frac{\tau_{M}}{\tau_{P}}=\frac{\lambda_{A}}{\lambda_{B}},\qquad \frac{\tilde{\beta}_{M}}{\tilde{\beta}_{P}}=\lambda_{A},\qquad \frac{\tilde{\Omega}_{M}}{\tilde{\Omega}_{P}}=\lambda_{A},\qquad \frac{\tilde{\tau}_{M}}{\tilde{\tau}_{P}}=1,\qquad \frac{D_{M}}{D_{P}}=1
\end{equation}
Normalized agents of change is the sum in the same respect:
\begin{equation}
\label{eq_18}
\Omega=\sum^{k}_{i=1}{\Omega_{i}}
\end{equation}
The ratio of $\Omega$ is expressed in the following alternate form:
\begin{equation}
\label{eq_19}
\Omega_{R}=\frac{\Omega_{M}}{\Omega_{P}}=\frac{\sum^{k}_{i=1}{\Omega_{M,i}}}{\sum^{k}_{i=1}{\Omega_{P,i}}}=\frac{\Omega_{M,1}+\Omega_{M,2}+...+\Omega_{M,k}}{\Omega_{P,1}+\Omega_{P,2}+...+\Omega_{P,k}}
\end{equation}
By the law of scaling ratios, The following must be true:
\begin{equation}
\label{eq_13}
\lambda_{A}=\frac{\Omega_{M,1}}{\Omega_{P,1}},\lambda_{A}=\frac{\Omega_{M,2}}{\Omega_{P,2}},...,\lambda_{A}=\frac{\Omega_{M,k}}{\Omega_{P,k}}
\end{equation}
Depending on the scaling ratio values, From Reyes, the scaling methods and similarity criteria is subdivided into five categories; 2-2 affine, dilation, $\beta$-strain, $\omega$-strain, and identity \cite{DSS2015}.
Table \ref{DSS:table_1} summarizes the similarity criteria. Despite the five categories, in essence, all are 2-2 affine with exceptions of partial scaling ratios values being 1.
\begin{table}[H]
\centering
\begin{tabular}{c|c|c|c|c}
\hline
%\rowcolor{lightgray}
\multicolumn{5}{c}{Basis for Process Space-time Coordinate Scaling}\\
\hline
Metric & \multirow{2}{*}{$d\tilde{\tau}_{P}=d\tilde{\tau}_{P}$} & \multirow{2}{*}{And} & Covariance & \multirow{2}{*}{$\frac{1}{\omega_{P}}\frac{d\beta_{P}}{dt_{P}}=\frac{1}{\omega_{M}}\frac{d\beta_{M}}{dt_{M}}$} \\
Invariance & & & Principle & \\
\hline
\multicolumn{5}{c}{$\beta-\omega$ Coordinate Transformations}\\
\hline
2-2 Affine & Dilation & $\beta$-Strain & $\omega$-Strain & Identity \\
$\beta_{R}=\lambda_{A}$ & $\beta_{R}=\lambda$ & $\beta_{R}=\lambda_{A}$ & $\beta_{R}=1=\lambda_{B}$ & $\beta_{R}=1$ \\
$\omega_{R}=\lambda_{B}$ & $\omega_{R}=\lambda$ & $\omega_{R}=1$ & $\omega_{R}=\lambda_{B}$ & $\omega_{R}=1$ \\
\hline
\multicolumn{5}{c}{Similarity Criteria}\\
\hline
$\tilde{\Omega}_{R}=\lambda_{A}$ & $\tilde{\Omega}_{R}=\lambda$ & $\tilde{\Omega}_{R}=\lambda_{A}$ & $\tilde{\Omega}_{R}=1$ & $\tilde{\Omega}_{R}=1$ \\
$\tau_{R}=t_{R}=\frac{\lambda_{A}}{\lambda_{B}}$ & $\tau_{R}=t_{R}=1$ & $\tau_{R}=t_{R}=\lambda_{A}$ & $\tau_{R}=t_{R}=\frac{1}{\lambda_{B}}$ & $\tau_{R}=t_{R}=1$ \\
\hline
\end{tabular}
\caption{Scaling Methods and Similarity Criteria Resulting from Two-Parameter Transformations \cite{DSS2015}}\label{DSS:table_1}
\end{table}
The separation between both process curves along the constant normalized process time is the local distortion \cite{Martin2019}:
\begin{equation}
\label{eq_15}
\tilde{\eta}_{k}=\beta_{P_{k}}\sqrt{\varepsilon D_{P_{k}}}\left[\frac{1}{\Omega_{P_{k}}}-\frac{\lambda_{A}}{\Omega_{M_{k}}}\right]
\end{equation}
Where $\epsilon$ is a sign adjuster ensuring positive values within the square root. The total distortion is:
\begin{equation}
\label{eq_16}
\tilde{\eta}_{T}=\sum^{N}_{k=1}{\left|\tilde{\eta}_{k}\right|}
\end{equation}
And, the equivalent standard deviation is:
\begin{equation}
\label{eq_17}
\sigma_{est}=\sqrt{\frac{1}{N}\sum^{N}_{k=1}{\tilde{\eta}^{2}_{k}}}
\end{equation}

113 changes: 69 additions & 44 deletions doc/theory_manual/raven_theory_manual.bib
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,35 @@
%% http://bibdesk.sourceforge.net/
%% Created for Andrea Alfonsi at 2015-01-21 08:58:35 -0700
%% Created for Andrea Alfonsi at 2015-01-21 08:58:35 -0700
%% Saved with string encoding Unicode (UTF-8)
%% Saved with string encoding Unicode (UTF-8)
@book{Einstein1966,
author = {A. Einstein and L. Infeld},
title = {{The Evolution of Physics from early concepts to relativity and quanta}},
year = {1966},
publisher = {Simon and Schuster Publisher},
address = {New York, NY}}}
@article{Reyes2015,
author = {J.N. Reyes and Cesear Frepoli and J.P. Yurko},
title = {{The Dynamical System Scaling Methodology: Comparing Dimensionless Governing Equations with the H2TS and FSA Methodologies}},
journal = {The 16th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-16)},
year = {2015}}

@book{Martin2019,
author = {R.P. Martin and C. Frepoli},
title = {{Design-Basis Accident Analysis Methods for Light-Water Nuclear Power Plants}},
year = {2019},
publisher = {World Scientific}}

@article{DSS2015,
author = {J.N. Reyes},
title = {{T}he {D}ynamical {S}ystem {S}caling {M}ethodology},
journal = {The 16th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH-16)},
year = {2015}}

@Book{StochasticMethods,
author = {C. Gardiner},
Expand Down Expand Up @@ -216,53 +241,53 @@ @article{benchmark
year={1968}
}

@article{SCLagrange,
auTHor = "Babuska and Nobile and Tempone",
Title = "{A stochastic collocation method for elliptic partial differential equations with random input data}",
@article{SCLagrange,
auTHor = "Babuska and Nobile and Tempone",
Title = "{A stochastic collocation method for elliptic partial differential equations with random input data}",
journal = "SIAM Journal on Numerical Analysis",
volume = 45,
YEAR = 2007,
}
YEAR = 2007,
}

@article{hdmr,
auTHor = "Li and Rosenthal and Rabitz",
Title = "{High dimensional model representations}",
@article{hdmr,
auTHor = "Li and Rosenthal and Rabitz",
Title = "{High dimensional model representations}",
journal = "J. Phys. Chem. A",
volume = 105,
YEAR = 2001,
}
YEAR = 2001,
}

@article{hdmr_neutron,
auTHor = "Hu and Smith and Willert and Kelley",
Title = "{High dimensional model representations for the neutron transport equation}",
@article{hdmr_neutron,
auTHor = "Hu and Smith and Willert and Kelley",
Title = "{High dimensional model representations for the neutron transport equation}",
journal = "NS\&E",
volume = 177,
YEAR = 2014,
}
YEAR = 2014,
}

#no TD or HC, just SC
@article{sparseSC,
auTHor = "Nobile and Tempone and Webster",
Title = "{A sparse grid stochastic collocation method for partial differential equations with random input data}",
@article{sparseSC,
auTHor = "Nobile and Tempone and Webster",
Title = "{A sparse grid stochastic collocation method for partial differential equations with random input data}",
journal = "SIAM Journal on Numerical Analysis",
volume = 46,
YEAR = 2008,
}
YEAR = 2008,
}

@article{sparse1,
auTHor = "Barthelmann and Novak and Ritter",
Title = "{High dimensional polynomial interpolation on sparse grids}",
@article{sparse1,
auTHor = "Barthelmann and Novak and Ritter",
Title = "{High dimensional polynomial interpolation on sparse grids}",
journal = "Advances in Computational Mathematics",
volume = 12,
YEAR = 2000,
}
YEAR = 2000,
}

@article{sparse2,
auTHor = "Bungartz and Griebel",
Title = "{Sparse grids}",
@article{sparse2,
auTHor = "Bungartz and Griebel",
Title = "{Sparse grids}",
journal = "Acta Numerica",
volume = 13,
YEAR = 2004,
YEAR = 2004,
}

@book{textbook,
Expand All @@ -274,20 +299,20 @@ @book{textbook
Title = {Spectral methods for uncertainty quantification with applications to computational fluid dynamics},
Year = {2010}}
@article{erin01,
auTHor = "Fichtl and Prinja",
Title = "{The stochastic collocation method for radiation transport in random media}",
@article{erin01,
auTHor = "Fichtl and Prinja",
Title = "{The stochastic collocation method for radiation transport in random media}",
journal = "J. Quantitative Spectroscopy \& Radiative Transfer",
volume= 12,
YEAR = 2011,
YEAR = 2011,
}

@article{mike01,
auTHor = "Rising and Prinja and Talou",
Title = "{Prompt fission neutron spectrum uncertainty propagation using polynomial chaos expansion}",
@article{mike01,
auTHor = "Rising and Prinja and Talou",
Title = "{Prompt fission neutron spectrum uncertainty propagation using polynomial chaos expansion}",
journal = "Nucl. Sci. Eng.",
volume= 175,
YEAR = 2013,
YEAR = 2013,
}

@TechReport{RAVENuserManual,
Expand Down Expand Up @@ -497,11 +522,11 @@ @article{SVM_Burges
issn = {1384-5810},
pages = {121--167},
publisher = {Kluwer Academic Publishers},
}
}

@article{MD_spline,
title = {Multidimensional Spline Interpolation: Theory and Applications},
author = {Habermann, Christian and Kindermann, Fabian},
author = {Habermann, Christian and Kindermann, Fabian},
year = {2007},
journal = {Computational Economics},
volume = {30},
Expand Down Expand Up @@ -537,7 +562,7 @@ @inproceedings{Shepard
pages = {517--524},
publisher = {ACM},
address = {New York, NY, USA}
}
}

@misc{PBS,
Date-Added = {2015-01-20 19:25:37 +0000},
Expand Down Expand Up @@ -772,7 +797,7 @@ @inproceedings{ANS2014alf
Date-Added = {2013-01-29 22:01:50 +0000},
Title = {Performing Probabilist Risk Assessment Through RAVEN},
Year = {2014}}

@inproceedings{ANS2014alfADET,
Author = {A. Alfonsi and C. Rabiti and D. Mandelli and J. Cogliati and B. Kinoshita},
Booktitle = {Proceedings American Nuclear Society 2014 Winter Meeting Nuclear-The Foundation of Clean Energy, Anaheim, CA, (2014)},
Expand All @@ -793,7 +818,7 @@ @TechReport{RELAP5userManual
OPTnote = {},
annote = {rev.7}
}

@article{Bailey2018,
Author = {Paul Bailey and Ahmad Emad and Ting Zhang and Qingshu Xie and Emmanuel Sikali},
Date-Added = {2021-10-29 22:01:18 +0000},
Expand Down
4 changes: 4 additions & 0 deletions doc/theory_manual/raven_theory_manual.tex
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,9 @@
\usepackage{lscape}
\usepackage[toc,page]{appendix}
\usepackage{RAVEN}
\usepackage{tabls}
\usepackage{multirow}
\usepackage{float}

\newtheorem{mydef}{Definition}
\newcommand{\norm}[1]{\lVert#1\rVert}
Expand Down Expand Up @@ -404,6 +407,7 @@
\input{reducedOrderModeling.tex}
\input{statisticalAnalysis.tex}
\input{dataMining.tex}
\input{dssPostProcessor.tex}
\clearpage
\begin{appendices}
\section{Document Version Information}
Expand Down
25 changes: 23 additions & 2 deletions doc/user_manual/metrics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -70,8 +70,7 @@ \section{Metrics}
\item \textbf{Other metric}, such as \xmlString{DTW}.
\end{itemize}

The valid \textbf{MetricID}s are: \xmlAttr{SKL}, \xmlAttr{ScipyMetric}, \xmlAttr{DTW}, \xmlAttr{CDFAreaDifference},
and \xmlAttr{PDFCommonArea}. This XML node requires the following attributes:
The valid \textbf{MetricID}s are: \xmlAttr{SKL}, \xmlAttr{ScipyMetric}, \xmlAttr{DTW}, \xmlAttr{CDFAreaDifference}, \xmlAttr{PDFCommonArea}, and \xmlAttr{DSS}. This XML node requires the following attributes:
\begin{itemize}
\item \xmlAttr{name}, \xmlDesc{required string attribute}, user-defined name of this metric. \nb As with other
objects, this name can be used to refer to this specific entity from other input blocks in the XML.
Expand Down Expand Up @@ -599,3 +598,25 @@ \subsubsection{Distance Based Metric}

In addition to this XML subnode, the users can also specify the corresponding parameters for each `metric' according to
previous sections.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Dynamical System Scaling}
\label{subsection:DSS}
The Dynamical System Scaling (DSS) is a distance metrics that is used to measure the separation
between two time-dependent data sets.

The specifications of a DSS metric is defined within the \xmlNode{Metric} XML block. The XML node \xmlAttr{subType} must be \textbf{PPDSS} (see \ref{subsubsec:Validation}) in the \xmlNode{PostProcessor} for the outputs of the post-processor to be in the right format for DSS metric inputs.

An example of DSS defined in RAVEN is provided below:
\begin{lstlisting}[style=XML]
<Simulation>
...
<Metrics>
...
<Metric name="example" subType="DSS">
</Metric>
...
</Metrics>
...
</Simulation>
\end{lstlisting}
Loading

0 comments on commit 9d8db47

Please sign in to comment.