Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md #439

Merged
merged 1 commit into from
Nov 29, 2017
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
# Raven
Risk Analysis Virtual Environment

RAVEN (Risk Analysis Virtual Environment) is one of the many INL-developed software tools researchers can use to identify and increase the safety margin in nuclear reactor systems.

As a generic software framework, RAVEN is designed to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN includes the following major capabilities:
RAVEN is designed to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN includes the following major capabilities:

- Sampling of codes for uncertainty quantification and reliability analyses
- Generation and use of reduced-order models (also known as surrogate)
Expand Down