This repository provides a PyTorch implementation of the paper MS-TCN++: Multi-Stage Temporal Convolutional Network for Action Segmentation.
Python3, pytorch
- We added additive attention to model.py using einstein summation
- Combine train, val, predict and eval into one module named - train_predict_eval.py
- The different experiments can be seen in - train_predict_eval.sh
- Adding logs to ClearML
- train-test-val split is unique to our dataset
@article{li2020ms,
author={Shi-Jie Li and Yazan AbuFarha and Yun Liu and Ming-Ming Cheng and Juergen Gall},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={MS-TCN++: Multi-Stage Temporal Convolutional Network for Action Segmentation},
year={2020},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2020.3021756},
}
@inproceedings{farha2019ms,
title={Ms-tcn: Multi-stage temporal convolutional network for action segmentation},
author={Farha, Yazan Abu and Gall, Jurgen},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3575--3584},
year={2019}
}