Skip to content

Code for our paper Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation IJCAI 2021

Notifications You must be signed in to change notification settings

jarheadjoe/Adv-spec-ker-matching

Repository files navigation

Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation

Installation

Datasets

Download data and convert to .tfrecord files for TensorFlow (./generate_tfrecords.sh)

Packages

We require the following packages. Adjust for your computer setup.

module load cuda/10.1.105 cudnn/7.6.4.38_cuda10.1 python3/3.7.4
pip install --user --upgrade pip
export PATH="$HOME/.local/bin:$PATH"
pip3 install --user --upgrade pip
pip3 install --user --upgrade numpy cython
pip3 install --user --upgrade tensorflow-gpu pillow lxml jupyter matplotlib pandas scikit-learn scipy tensorboard rarfile tqdm pyyaml grpcio absl-py

# If using --moving_average or F1 score metrics (typically tensorflow-addons, but that errors at the moment with TF 2.2)
pip3 install --user git+https://github.com/tensorflow/addons.git@r0.9

Usage

Example

Train our model on person 14 of the UCI HAR dataset and adapt to person 19.

python3 main.py \
    --logdir=example-logs --modeldir=example-models \
    --method=smd --dataset=ucihar --sources=14 \
    --target=19 --uid=0 --debugnum=0 --gpumem=0

Then evaluate that model on the holdout test data, outputting the results to a YAML file.

mkdir -p results
python3 main_eval.py \
    --logdir=example-logs --modeldir=example-models \
    --jobs=1 --gpus=1 --gpumem=0 \
    --match="ucihar-0-smd-[0-9]*" --selection="best_target" \
    --output_file=results/results_example_best_target-ucihar-0-daws.yaml

Note: there are a number of other models (e.g. --model=lstmfcn), methods (e.g. --method=dann), datasets (e.g. --dataset=wisdm_at), etc. implemented that you can experiment with beyond what was included in the paper.

Analysis

Then look at the resulting results/results_*.yaml files or analyze with analysis.py.

In addition, there are scripts for visualizing the datasets (datasets/view_datasets.py), viewing dataset statistics (dataset_statistics.py), and displaying or plotting the class balance of the data (class_balance.py, class_balance_plot.py).

Navigating the Code

Here is an outline of the key elements of the code.

Models

  • --model=fcn base feature extractor in paper
  • --model=lstmfcn fcn+lstm feature extractor

Methods

  • dannMethods.py includes methods based on domain classifier (DANN, CoDATs)

  • nannMethods.py includes methods based on non-learnable metrics (DDC, DAN, CORAL, etc.)

  • nannMethods.py includes methods based on learnable metrics (our method)

About

Code for our paper Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation IJCAI 2021

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published