Complex type validators that generate TypeScript types for you.
The validation errors are detailed. Adapted from the brilliant work in flow-runtime
.
I recreated this project as typed-validators
and added Flow support!
A few breaking changes to the API were necessary for Flow support, but they also made it easier to declare objects with optional properties.
- Introduction
- What about generating validators from type defs?
- API
- Type creators
t.boolean()
t.boolean(true)
t.string()
t.string('foo')
t.number()
t.number(3)
t.symbol()
t.symbol(MySymbol)
t.null()
/t.nullLiteral()
t.nullOr(t.string())
t.undefined()
/t.undefinedLiteral()
t.nullish()
t.nullishOr(t.string())
t.array(t.number())
t.simpleObject({ foo: t.string() })
t.object
t.record(t.string(), t.number())
t.instanceOf(Date)
t.tuple(t.string(), t.number())
t.allOf(A, B)
t.oneOf(t.string(), t.number())
t.alias(name, type)
t.ref(() => typeAlias)
t.Type<T>
t.ExtractType<T extends Type<any>>
t.TypeAlias<T>
- Custom Constraints
- Recursive Types
- Type creators
When you need to validate the inputs to a TypeScript API, a problem arises. How do you ensure that a value that passes validation matches your declared TypeScript type? Someone might modify one and forget to modify the other:
type Post = {
author: {
name: string
username: string
}
content: string
// newly added by developer
tags: string[]
}
// hypothetical syntax
const validator = requireObject({
author: requireObject({
name: requireString(),
username: requireString(),
}),
content: requireString(),
// uhoh!! developer forgot to add tags here
})
typescript-validators
solves this by generating TypeScript types from your validators:
import * as t from 'typescript-validators'
const PostValidator = t.simpleObject({
author: t.simpleObject({
name: t.string(),
username: t.string(),
}),
content: t.string(),
tags: t.array(t.string()),
})
type Post = t.ExtractType<typeof PostValidator>
const example: Post = PostValidator.assert({
author: {
name: 'MC Hammer',
username: 'hammertime',
},
content: "Can't touch this",
tags: ['mc-hammer', 'hammertime'],
})
Hover over Post
in VSCode and you'll see, voilà:
type Post = {
author: {
name: string
username: string
}
content: string
tags: string[]
}
I'd like to be able to do this, because type defs are a lot more readable. In fact, for Flow, it's possible with
babel-pluging-flow-runtime
, which I have a lot of experience with. That looks like this:
import {type Type, reify} from 'flow-runtime'
type Post = {
author: {
name: string
username: string
}
content: string
tags: string[]
}
const PostValidator = (reify: Type<Post>) // looooots of magic here
const example: Post = PostValidator.assert({
author: {
name: 'MC Hammer',
username: 'hammertime',
},
content: "Can't touch this",
tags: ['mc-hammer', 'hammertime'],
})
This is sweet but there are some caveats:
- You have to add a Babel plugin to your toolchain (for TypeScript, not everyone wants to use Babel)
- There are issues with the Babel plugin. It aims to support all Flow types, with varying success.
- The original author of
flow-runtime
abandoned the project and I don't blame him. It was hugely ambitious and difficult to maintain.
The author of flow-runtime
himself told me in private conversations that he had moved on to an approach like
typescript-validators
in his own projects, because generating types from the validator declarations is a lot
simpler and more maintainable in the long run.
I recommend importing like this:
import * as t from 'typescript-validators'
All of the following methods return an instance of t.Type<T>
.
A validator that requires the value to be a boolean
.
A validator that requires the value to be true
.
A validator that requires the value to be a string
.
A validator that requires the value to be 'foo'
.
A validator that requires the value to be a number
.
A validator that requires the value to be 3
.
A validator that requires the value to be a symbol
.
A validator that requires the value to be MySymbol
.
A validator that requires the value to be null
.
A validator that requires the value to be string | null
A validator that requires the value to be undefined
.
A validator that requires the value to be null | undefined
.
A validator that requires the value to be string | null | undefined
.
A validator that requires the value to be number[]
.
A validator that requires the value to be an object with only a foo
property that's a string
.
For dealing with optional properties, use the following. The syntax is a bit awkward but it's the best way I could find to get a clean type output:
const ThingValidator = t.object<{
name: any
comment?: any
}>()({
name: t.string(),
comment: t.optional(t.string()),
})
type Thing = t.ExtractType<typeof ThingValidator>
The type of Thing
will be { name: string, comment?: string }
. Note that the property types in the explicit type parameter
(any
) are ignored. The type parameter just indicates which properties are required and which are optional, and also allows
you to mark properties readonly. These attributes will be reflected in t.ExtractType
.
You can also use the t.optionalNullOr(t.string())
as a shorthand for
t.optional(t.nullOr(t.string()))
.
A validator that requires the value to be Record<string, number>
.
A validator that requires the value to be an instance of Date
.
A validator that requires the value to be [string, number]
.
Accepts a variable number of arguments.
A validator that requires the value to be A & B
. Accepts a variable number of arguments, though type generation is only overloaded up to 8 arguments. For example:
const ThingType = t.simpleObject({ name: t.string() })
const CommentedType = t.simpleObject({ comment: t.string() })
const CommentedThingType = t.allOf(ThingType, CommentedType)
CommentedThingType.assert({ name: 'foo', comment: 'sweet' })
A validator that requires the value to be string | number
. Accepts a variable number of arguments, though type generation is only overloaded up to 8 arguments.
Creates a TypeAlias
with the given name
and type
.
Type aliases serve two purposes:
- They allow you to create recursive type validators with
t.ref()
- You can add custom constraints to them
Creates a reference to the given TypeAlias
. See Recursive Types for examples.
The base class for all validator types.
T
is the type of values it accepts.
Returns true
if and only if input
is the correct type.
Throws an error if input
isn't the correct type.
prefix
will be prepended to thrown error messages.
path
will be prepended to validation error paths. If you are validating a function parameter named foo
,
pass ['foo']
for path
to get clear error messages.
Validates input
, returning any errors in the Validation
.
prefix
and path
are the same as in assert
.
Logs a warning to the console if input
isn't the correct type.
Returns a string representation of this type (using TS type syntax in most cases).
Gets the TypeScript type that a validator type accepts. For example:
import * as t from 'typescript-validators'
const PostValidator = t.simpleObject({
author: t.simpleObject({
name: t.string(),
username: t.string(),
}),
content: t.string(),
tags: t.array(t.string()),
})
type Post = t.ExtractType<typeof PostValidator>
Hover over Post
in the IDE and you'll see, voilà:
type Post = {
author: {
name: string
username: string
}
content: string
tags: string[]
}
The name of the alias.
Adds custom constraints. TypeConstraint<T>
is a function (value: T) => string | null | undefined
which
returns nullish if value
is valid, or otherwise a string
describing why value
is invalid.
It's nice to be able to validate that something is a number
, but what if we want to make sure it's positive?
We can do this by creating a type alias for number
and adding a custom constraint to it:
const PositiveNumberType = t
.alias('PositiveNumber', t.number())
.addConstraint((value: number) => (value > 0 ? undefined : 'must be > 0'))
PositiveNumberType.assert(-1)
The assertion will throw a t.RuntimeTypeError
with the following message:
Value must be > 0
Expected: PositiveNumber
Actual Value: -1
Actual Type: number
Creating validators for recursive types takes a bit of extra effort. Naively, we would want to do this:
const NodeType = t.object<{
value: any
left?: any
right?: any
}>()({
value: t.any(),
left: t.optional(NodeType),
right: t.optional(NodeType),
})
But t.optional(NodeType)
causes the error Block-scoped variable 'NodeType' referenced before its declaration
.
To work around this, we can create a TypeAlias
and a reference to it:
const NodeType: t.TypeAlias<{
value: any
left?: Node
right?: Node
}> = t.alias(
'Node',
t.object<{
value: any
left?: any
right?: any
}>()({
value: t.any(),
left: t.optional(t.ref(() => NodeType)),
right: t.optional(t.ref(() => NodeType)),
})
)
type Node = t.ExtractType<typeof NodeType>
NodeType.assert({
value: 'foo',
left: {
value: 2,
right: {
value: 3,
},
},
right: {
value: 6,
},
})
Notice how we use a thunk function in t.ref(() => NodeType)
to avoid referencing NodeType
before its declaration.