Skip to content

jianwen-xie/3DDescriptorNet

Repository files navigation

Learning Descriptor Networks for 3D Shape Synthesis and Analysis

This repository contains a tensorflow implementation for the paper "Learning Descriptor Networks for 3D Shape Synthesis and Analysis ". (http://www.stat.ucla.edu/~jxie/3DDescriptorNet/3DDescriptorNet.html)

Requirements

  • Python 2.7 or Python 3.3+
  • Tensorflow r1.3+
  • Install required Python libraries
    pip install numpy scipy

Getting Started

  • Clone this repo:

    git clone https://github.com/jianwen-xie/3DDescriptorNet.git
    cd 3DDescriptorNet
  • Download volumetric data and save it to ./data directory. The dataset contains 10 categories of voxelizations of ModelNet10.

  • Download pretrained models and save it to the cloned directory.

Exp1: 3D object synthesis

  • Train the synthesis model on night stand category:

    python train.py --category night_stand --data_dir ./data/volumetric_data/ModelNet10 --output_dir ./output
  • Visualize the generated results using the MATLAB code in visualization/visualize.m, e.g.

    addpath('visualization')
    visualize('./output/night_stand/synthesis', 'sample2990.mat')
  • Evaluate synthesized results using the evaluation code in ./evaluation

  • You can download our synthesized results and test on it.

Exp2: 3D object recovery

  • Train the recovery model on sofa category:

    python rec_exp.py --category sofa \
                      --num_epochs 1000 \
                      --batch_size 50 \
                      --step_size 0.07 \
                      --sample_steps 90 
  • Test the recovery model:

    1. Download the incomplete data and save it to ./data directory. For each category in volumetric_data, the incomplete data contains: 1) incomplete_test.mat: 70% randomly corrupted testing data 2) masks.mat: The mask to corrupt the testing data. 3. original_test.mat: original testing data for comparison.
    2. You can download our pretrained model to test recovery.
    3. Run recovery on the corrupted data
    python rec_exp.py --test --category sofa \
                      --ckpt pretrained_model/recovery/sofa/sofa.ckpt \
                      --incomp_data_path ./data/incomplete_data \
                      --batch_size 50 \
                      --step_size 0.07 \
                      --sample_steps 90 

Exp3: 3D object super resolution

  • Train the super resolution model on toilet category:

    python sr_exp.py --category toilet \
                      --cube_len 64 \
                      --scale 4 \
                      --num_epochs 500 \
                      --batch_size 50 \
                      --step_size 0.01 \
                      --sample_steps 10 
  • Test the super resolution model:

    python rec_exp.py --test --category toilet \
                      --ckpt ./output/toilet/checkpoints/model.ckpt-490 \
                      --cube_len 64 \
                      --scale 4 \
                      --batch_size 50 \
                      --step_size 0.01 \
                      --sample_steps 10 

Exp4: 3D object classification

Method Classification
Geometry Image 88.4%
PANORAMA-NN 91.1%
ECC 90.0%
3D ShapeNets 83.5%
DeepPana 85.5%
SPH 79.8%
VConv-DAE 80.5%
3D-GAN 91.0%
3D DescriptorNet (ours) 92.4%
  • Train Classification using Logistic Regression (pretrained model):

    python train_classification.py --classifier_type logistic --ckpt pretrained_models/classification/model.ckpt
    
  • Train Classification using SVM:

    python train_classification.py --classifier_type svm --ckpt pretrained_models/classification/model.ckpt
    

References

@inproceedings{3DDesNet,
    title={Learning Descriptor Networks for 3D Shape Synthesis and Analysis},
    author={Xie, Jianwen and Zheng, Zilong and Gao, Ruiqi and Wang, Wenguan and Zhu Song-Chun and Wu, Ying Nian},
    booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2018}
}

For any questions, please contact Jianwen Xie (jianwen@ucla.edu) and Zilong Zheng (zilongzheng0318@ucla.edu).

About

Learning Descriptor Networks for 3D Shape Synthesis and Analysis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published