Skip to content

<Real Time Vision Based LiDAR> // Ideas and skeleton codes are from <Pseudo LiDAR>, and Disparity DL code is <CoEx>.

License

Notifications You must be signed in to change notification settings

jiho264/plv1realtime

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

< Real Time Pseudo Lidar >

source : https://github.com/mileyan/Pseudo_Lidar
maker : Jiho LEE (R.O.KOREA) / jiho264@inu.ac.kr

Description

  • Real Time Vision Based LiDAR
  • This Code Can Create 16 FPS Point Cloud Topics On GTX 1080Ti
  • Original source is <Pseudo_Lidar>. i edited it.

Process

1. Input.

  1. Left color image. save to 'dev/input.png'
  2. Right color image.
  3. calibration + camera info.

2. Create Disparity Map from Stereo Image.

- Find Disparity and generate to Depth Image.
- Use <CoEx> !.
- save to 'dev/input_to_disparity.png'

3. Create PointCloudXYZ from Disparity Map.

4. Convert PointCloudXYZRGB to PointCloud2 msgs.

- rostopic '/pseudo_lidar'
- frame_id : world

Requirements(ubuntu 20.04) :

  1. cudnn
  2. tensorflow, numpy, opencv(pip install ver.) ...
  3. ROS noetic
  4. OpenCV 3.4.18 (do opencvinstall.ipynb)
  5. oCamS ROS pkg

How to run (coex_plv1.py)

  1. roscore
  2. rosbag play temp.bag -l
  3. !python3 coex_plv1.py
  4. run rviz
    • /pseudo_lidar (pointcloud2)
    • frame_id = 'world'

Reference

  1. Pseudo LiDAR
  2. Ros node : http://wiki.ros.org/pcl/Overview
  3. Pcl Helper (PointCloudXYZRGB to PointCloud2 msgs) - https://github.com/udacity/RoboND-Perception-Exercises#documentation-for-pcl_helperpy
  4. make bag file from KITTI dataset - https://github.com/tomas789/kitti2bag
  5. calibration.
  6. CoEx : https://github.com/antabangun/coex

The ones below are used only in the old version











Function

1. you can choose disparity model. (from Hitnet)
#hitnet_depth = HitNet('/home/jiho/plv1realtime/dev/eth3d.pb', ModelType.eth3d, CameraConfig(0.1, 320))
hitnet_depth = HitNet('/home/jiho/plv1realtime/dev/middlebury_d400.pb', ModelType.middlebury, CameraConfig(0.1, 320))

runtime : eth3d >> middlebury
resolution : eth3d << middlebury
2. calibration source.
dev/left.yami (from oCamS ROS pkg)
in P, R

dev/calib_velo_to_cam.txt (from kitti raw dataset)
in R, T

How to run (run_realtime_ocam.py)

  1. cd catkin_ws catkin_make source devel/setup.bash roslaunch ocams_1cgn ocams_ros.launch
  2. rviz

*** oCamS ros output *** left_image_raw : BGR right_image_raw : GRAY(not BGR)

How to run (run_realtime_ocam_python3.py)

  1. roscore
  2. !python3 run_realtime_ocam_python3.py
  3. rviz

oCam Setting

  • If you want change camera resolution or frame_rate

edit '../catkin_ws/src/ocams1_cgn/launch/ocams_ros.launch edit Parameter

  • If you want change camera calibration

roslaunch ocams_1cgn calibration.launch you must have '8x6 3cm checker board' print this paper https://markhedleyjones.com/projects/calibration-checkerboard-collection follow https://www.youtube.com/watch?v=DPENw80cVmI&ab_channel=WITHROBOTInc.

About

<Real Time Vision Based LiDAR> // Ideas and skeleton codes are from <Pseudo LiDAR>, and Disparity DL code is <CoEx>.

Topics

Resources

License

Stars

Watchers

Forks