🥇 This repository contains the pytorch code for the arxiv paper: "Intriguing Properties of Positional Encoding in Time Series Forecasting".
Install Pytorch and other necessary dependencies.
pip install -r requirements.txt
The datasets can be obtained from the official “itransformer” repository or directly from Google Drive or Tsinghua Cloud.
Example: (Train, evaluate, and test on ECL dataset, lookback length:96, prediction length:196):
python -u run.py \
--is_training 1 \
--root_path ./dataset/electricity/ \
--data_path electricity.csv \
--model_id ECL_96_192 \
--enc_in 321 \
--dec_in 321 \
--c_out 321 \
--des 'Exp' \
--batch_size 16 \
--learning_rate 0.00108 \
--weight_decay 9e-06\
--use_weight_dec\
--pred_len 192
--itr 1
The training command can be modified according to the above statement :)
If you find our work and codes useful, please consider citing our paper and star our repository, thanks a lot.
@misc{zhang2024intriguing,
title={Intriguing Properties of Positional Encoding in Time Series Forecasting},
author={Jianqi Zhang and Jingyao Wang and Wenwen Qiang and Fanjiang Xu and Changwen Zheng and Fuchun Sun and Hui Xiong},
year={2024},
eprint={2404.10337},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
(arXiv version, the final version will be updated after the paper is published.)