#
PuiseuxPolynomials
— Module.
This package implements Puiseux polynomials, that is linear combinations of monomials of the type x₁^{a₁}… xₙ^{aₙ}
where xᵢ
are variables and aᵢ
are exponents which can be arbitrary rational numbers. When the aᵢ
are integers we refer to "multivariate Laurent polynomials", and when tha aᵢ
are positive integers we refer then to "multivariate polynomials" (or true polynomials).
This package also implements multivariate rational fractions, constructed as the quotient of two Laurent polynomials (which is normalized to become the quotient of two true polynomials). This package is in particular a perfectly usable (and quite good I hope) implementation of multivariate polynomials and multivariate rational fractions if you are only interested in that.
The main use of Puiseux polynomials is they are the ring of integers of the algebraic closure of the the multivariate rational fractions. In particular cyclotomic Hecke algebras take their character values and representations in them.
This package depends only on the packages Reexport
, LaurentPolynomials
and ModuleElts
s; the names defined by LaurentPolynomials
are reexported by this package.
Our Puiseux polynomials have the parametric type Mvp{C,E}
where C
is the type of the coefficients and E
is the type of the exponents: E=Int
for Laurent polynomials; E=Rational{Int}
for more general Puiseux polynomials. When printing the type of an Mvp
, only C
is printed if E==Int
. Rational fractions are only defined for numerator and denominator true polynomials and have type Frac{Mvp{C,Int}}
–- the quotient of two Laurent polynomials is normalized to a quotient of two true polynomials.
We first look at how to make Puiseux polynomials.
@Mvp x₁,…,xₙ
assigns to each Julia name xᵢ
an Mvp
representing an indeterminate suitable to build multivariate polynomials or rational fractions. Mvp(:x₁)
creates the same Mvp
without assigning it to variable x₁
.
julia> @Mvp x,y # creates the variables x,y
julia> (x+y^-1)^3
Mvp{Int64}: x³+3x²y⁻¹+3xy⁻²+y⁻³
julia> x+Mvp(:z)
Mvp{Int64}: x+z
julia> x^(1//2) # a Puiseux monomial
Mvp{Int64,Rational{Int64}}: x½
julia> Mvp(3) # convert a number to an Mvp with only a constant term
Mvp{Int64}: 3
It is convenient to create Mvp
s using variables such as x,y
above. The functions repr
or print
show an Mvp
in a form which can be read back in Julia – this is also the way an Mvp
is printed in another context than the repl, IJulia or pluto:
julia> repr(3x*y^-2+4)
"Mvp{Int64, Int64}([:x=>1,:y=>-2]=>3,[]=>4)"
It is better not to use this form casually, since the arguments must be normalized (sorted by key, and no duplicate key).
Only monomials and one-term Mvp
s can be raised to a non-integral power; the Mvp
with one term constant c
times the monomial m
can be raised to a fractional power of denominator d
if and only if root(c,d)
is defined (this is equivalent to c^{1//d}
for floats);
julia> (4x)^(1//2)
Mvp{Int64,Rational{Int64}}: 2x½
julia> (2.0x)^(1//2)
Mvp{Float64,Rational{Int64}}: 1.4142135623730951x½
julia> root(2.0x)
Mvp{Float64,Rational{Int64}}: 1.4142135623730951x½
One may want to define root
differently; for instance, in my other package CylotomicNumbers
I define square roots of rationals as cyclotomics, and I also have implemented arbitrary roots of roots of unity.
julia> using CyclotomicNumbers
julia> (2x)^(1//2)
Mvp{Cyc{Int64},Rational{Int64}}: √2x½
julia> (E(3)*x)^(2//3)
Mvp{Cyc{Int64},Rational{Int64}}: ζ₉²x⅔
There are various ways to take an Mvp
apart. Below are the most direct; look also at the functions coefficient
, coefficients
, pairs
, monomials
, variables
and powers
.
julia> p=3x*y^-2+4
Mvp{Int64}: 3xy⁻²+4
julia> term(p,1) # a term is a Pair monomial=>coefficient
xy⁻² => 3
julia> term(p,2) # the trivial monomial Monomial() prints as an empty string
=> 4
julia> length(p) # the number of terms
2
julia> term.(p,1:length(p)) # same as pairs(p)
2-element Vector{Pair{Monomial{Int64}, Int64}}:
xy⁻² => 3
=> 4
julia> last(term(p,1)) # same as first(coefficients(p))
3
julia> m=first(term(p,1)) # same as first(monomials(p))
Monomial{Int64}:xy⁻²
julia> length(m) # how many variables in m
2
julia> map((x,y)->x=>y,variables(m),powers(m)) # same as pairs(m)
2-element Vector{Pair{Symbol, Int64}}:
:x => 1
:y => -2
julia> degree(m,:x) # power of x in m
1
julia> degree(m,:y) # power of y in m
-2
The valuation and degree of an Mvp can be inspected globally or variable by variable.
julia> p
Mvp{Int64}: 3xy⁻²+4
julia> variables(p)
2-element Vector{Symbol}:
:x
:y
julia> degree(p),degree(p,:x),degree(p,:y)
(0, 1, 0)
julia> valuation(p),valuation(p,:x),valuation(p,:y)
(-1, 0, -2)
Terms are totally ordered in an Mvp
by a monomial ordering (that is, an ordering on monomials so that x<y
implies xz<yz
for any monomials x,y,z
). The terms are in decreasing order, so that the first term is the highest. By default, the ordering is lex
. The orderings grlex
and grevlex
are also implemented (see their docstring and grobner_basis
for how to use them).
An Mvp
is a scalar if the valuation and degree are 0
. The function scalar
returns the constant coefficient if the Mvp
is a scalar, and nothing
otherwise.
Usual arithmetic (+
, -
, *
, ^
, /
, //
, one
, isone
, zero
, iszero
, ==
) works. Elements of type <:Number
are considered as scalars for scalar operations on the coefficients.
julia> p
Mvp{Int64}: 3xy⁻²+4
julia> p^2
Mvp{Int64}: 9x²y⁻⁴+24xy⁻²+16
julia> p/2
Mvp{Float64}: 1.5xy⁻²+2.0
julia> p//2
Mvp{Rational{Int64}}: (3//2)xy⁻²+2//1
When converting an Mvp
to another type of Mvp
one needs to specify the two type parameters (the type of the coefficients and the type of the exponents).
julia> Mvp{Float64,Rational{Int}}(p)
Mvp{Float64,Rational{Int64}}: 3.0xy⁻²+4.0
One can evaluate an Mvp
, setting the value of some variables, by using the function call syntax.
julia> p=x+y
Mvp{Int64}: x+y
julia> p(x=2) # evaluate p at x=2
Mvp{Int64}: y+2
julia> value(p,:x=>2) # there is also a more explicit `value` function.
Mvp{Int64}: y+2
julia> p(x=2,y=x) # simultaneous evaluation
Mvp{Int64}: x+2
julia> value(p,:x=>2,:y=>x)
Mvp{Int64}: x+2
Note that an Mvp
always evaluates to an Mvp
, for consistency. You should use scalar
on the result of giving values to all variables in a Mvp
to get a number.
julia> p(x=1,y=2)
Mvp{Int64}: 3
julia> scalar(p(x=1,y=2))
3
julia> v=(x^(1//2))(x=2.0)
Mvp{Float64,Rational{Int64}}: 1.4142135623730951
julia> scalar(v)
1.4142135623730951
One can divide an Mvp
by another when the division is exact, compute the gcd
and lcm
of two Mvp
.
julia> LinearAlgebra.exactdiv(x^2-y^2,x-y) # errors if the division is not exact
Mvp{Int64}: x+y
julia> (x+y)/(2x^2) # divide by a monomial
Mvp{Float64}: 0.5x⁻¹+0.5x⁻²y
julia> (x+y)//(2x^2)
Mvp{Rational{Int64}}: (1//2)x⁻¹+(1//2)x⁻²y
julia> (x+y)/(x-y) # if the division is not exact one gets a rational fraction
Frac{Mvp{Int64, Int64}}: (x+y)/(x-y)
Raising a non-monomial Laurent polynomial to a negative power returns a rational fraction. Rational fractions are normalized such that the numerator and denominators are true polynomials prime to each other. They have the arithmetic operations +
, -
, *
, /
, //
, ^
, inv
, one
, isone
, zero
, iszero
(these operations can operate between an Mvp
or a Number
and a Frac{<:Mvp}
).
julia> (x+1)^-2
Frac{Mvp{Int64, Int64}}: 1/(x²+2x+1)
julia> x+1/(y+1)
Frac{Mvp{Int64, Int64}}: (xy+x+1)/(y+1)
julia> 1/(y-1)-1/(y+1)
Frac{Mvp{Int64, Int64}}: 2/(y²-1)
One can evaluate a Frac
, setting the value of some variables, by using the function call syntax or the value
function:
julia> ((x+y)/(x-y))(x=y+1)
Mvp{Float64}: 2.0y+1.0
julia> value((x+y)/(x-y),:x=>y+1;Rational=true) # Rational=true says use //
Mvp{Int64}: 2y+1
A Frac
can be dissected using numerator
and denominator
. Frac
s and Mvp
s are scalars for broadcasting and can be sorted (have cmp
and isless
methods).
julia> m=[x+y x-y;x+1 y+1]
2×2 Matrix{Mvp{Int64, Int64}}:
x+y x-y
x+1 y+1
julia> n=inv(Frac.(m))
2×2 Matrix{Frac{Mvp{Int64, Int64}}}:
(-y-1)/(x²-2xy-y²-2y) (x-y)/(x²-2xy-y²-2y)
(x+1)/(x²-2xy-y²-2y) (-x-y)/(x²-2xy-y²-2y)
julia> lcm(denominator.(n))
Mvp{Int64}: x²-2xy-y²-2y
Finally, Mvp
s have methods conj
, adjoint
which operate on coefficients, a derivative
method, and methods positive_part
, negative_part
and bar
(useful for Kazhdan-Lusztig theory).
julia> @Mvp z
Mvp{Int64}: z
julia> hessian(p,vars)=[derivative(derivative(p,x),y) for x in vars, y in vars]
hessian (generic function with 1 method)
julia> hessian(x^2*y^2*z^2,[:x,:y,:z])
3×3 Matrix{Mvp{Int64, Int64}}:
2y²z² 4xyz² 4xy²z
4xyz² 2x²z² 4x²yz
4xy²z 4x²yz 2x²y²
julia> jacobian(pols,vars)=[derivative(p,v) for p in pols, v in vars]
jacobian (generic function with 1 method)
julia> jacobian([x,y,z],[:x,:y,:z])
3×3 Matrix{Mvp{Int64, Int64}}:
1 0 0
0 1 0
0 0 1
julia> p=(x+y^-1)^4
Mvp{Int64}: x⁴+4x³y⁻¹+6x²y⁻²+4xy⁻³+y⁻⁴
julia> positive_part(p)
Mvp{Int64}: x⁴
julia> negative_part(p)
Mvp{Int64}: y⁻⁴
julia> bar(p)
Mvp{Int64}: y⁴+4x⁻¹y³+6x⁻²y²+4x⁻³y+x⁻⁴
Despite the degree of generality of our polynomials, the speed is not too shabby. For the Fateman test f(f+1) where f=(1+x+y+z+t)^15, we take 3sec. According to the Nemo paper, Sagemath takes 10sec and Nemo takes 1.6sec.
#
PuiseuxPolynomials.Mvp
— Type.
Mvp
s are implemented as a list of pairs monomial=>coefficient
sorted by the monomial order lex
.
#
PuiseuxPolynomials.@Mvp
— Macro.
@Mvp x,y
is equivalent to (x,y)=Mvp(:x,:y)
excepted it creates x,y
in the global scope of the current module, since it uses eval
.
#
PuiseuxPolynomials.Mvp
— Method.
Mvp(x::Symbol)
creates the Mvp
with one term of degree one and coefficient 1 with variable x
#
LaurentPolynomials.valuation
— Function.
valuation(m::Mvp[,v::Symbol])
The valuation
of an Mvp
is the minimal degree of a monomial.
With second argument a variable name, valuation
returns the valuation of the polynomial in that variable.
julia> @Mvp x,y; a=x^2+x*y
Mvp{Int64}: x²+xy
julia> valuation(a), valuation(a,:y), valuation(a,:x)
(2, 0, 1)
#
LaurentPolynomials.degree
— Function.
degree(m::Mvp[,v::Symbol])
The degree
of a monomial is the sum of the exponents of the variables. The degree
of an Mvp
is the largest degree of a monomial.
With second argument a variable name, degree
returns the degree of the polynomial in that variable.
julia> a=x^2+x*y
Mvp{Int64}: x²+xy
julia> degree(a), degree(a,:y), degree(a,:x)
(2, 1, 2)
#
PuiseuxPolynomials.variables
— Function.
variables(a::Monomial)
iterator on the variables of a
(a sorted list of Symbol
s)
variables(p::Mvp)
variables(v::AbstractArray)
returns the list of variables of p
(resp. of all p
in v
) as a sorted list of Symbol
s.
julia> @Mvp x,y,z
julia> variables([z,[y+z],x])
3-element Vector{Symbol}:
:x
:y
:z
#
LaurentPolynomials.coefficients
— Method.
coefficients(p::Mvp, var::Symbol)
returns a Dict with keys the degree in var
and values the corresponding coefficient of p
with respect to var
.
julia> p=(x+y+inv(y))^4
Mvp{Int64}: x⁴+4x³y+4x³y⁻¹+6x²y²+12x²+6x²y⁻²+4xy³+12xy+12xy⁻¹+4xy⁻³+y⁴+4y²+6+4y⁻²+y⁻⁴
julia> coefficients(p,:x)
Dict{Int64, Mvp{Int64, Int64}} with 5 entries:
0 => y⁴+4y²+6+4y⁻²+y⁻⁴
4 => 1
2 => 6y²+12+6y⁻²
3 => 4y+4y⁻¹
1 => 4y³+12y+12y⁻¹+4y⁻³
julia> coefficients(p,:y)
Dict{Int64, Mvp{Int64, Int64}} with 9 entries:
0 => x⁴+12x²+6
4 => 1
-1 => 4x³+12x
2 => 6x²+4
-3 => 4x
-2 => 6x²+4
-4 => 1
3 => 4x
1 => 4x³+12x
The same caveat is applicable to coefficients
as to evaluating: the values are always Mvp
s. To get a list of scalars for the coefficients of a univariate polynomial represented as a Mvp
, one should use scalar
on the values of coefficients
.
#
LaurentPolynomials.coefficients
— Method.
coefficients(p::Mvp)
is an efficient iterator over the coefficients of the monomials in p
.
#
PuiseuxPolynomials.coefficient
— Function.
coefficient(p::Mvp,m::Monomial)
The coefficient of the polynomial p
on the monomial m
.
julia> @Mvp x,y; p=(x-y)^3
Mvp{Int64}: x³-3x²y+3xy²-y³
julia> coefficient(p,Monomial_(:x=>2,:y=>1)) # coefficient on x²y
-3
julia> coefficient(p,Monomial()) # constant coefficient
0
coefficient(p::Mvp, var::Symbol, d)
returns the coefficient of degree d
in the variable var
in the Mvp
p
.
julia> @Mvp x,y; p=(x+y^(1//2)+1)^3
Mvp{Int64,Rational{Int64}}: x³+3x²y½+3x²+3xy+6xy½+3x+y³⁄₂+3y+3y½+1
julia> coefficient(p,:y,1//2)
Mvp{Int64,Rational{Int64}}: 3x²+6x+3
julia> coefficient(p,:x,1)
Mvp{Int64,Rational{Int64}}: 3y+6y½+3
#
PuiseuxPolynomials.Monomial
— Type.
Monomials
are implemented as a list of pairs :variable=>degree
sorted in the alphabetic order of variables. The degree can be Int
or Rational{Int}
.
#
PuiseuxPolynomials.monomials
— Function.
monomials(p::Mvp)
is an efficient iterator over the monomials of p
.
#
PuiseuxPolynomials.powers
— Function.
powers(a::Monomial)
iterator on the powers of variables in a
#
Base.pairs
— Method.
pairs(a::Monomial)
returns the pairs :variable=>power
in a
.
#
Base.isless
— Method.
isless(a::Monomial,b::Monomial)
For our implementation of Mvp
s to work, isless
must define a monomial order (that is, for monomials m,a,b
we have a<b => a*m<b*m
). By default we use the "lex" ordering.
#
PuiseuxPolynomials.lex
— Function.
lex(a::Monomial, b::Monomial)
The "lex" ordering, where a<b
if the first variable in a/b
occurs to a positive power.
#
PuiseuxPolynomials.grlex
— Function.
grlex(a::Monomial, b::Monomial)
The "grlex" ordering, where a<b̀
if degree(a)>degree(b)
or the degrees are equal but lex(a,b)
.
#
PuiseuxPolynomials.grevlex
— Function.
grevlex(a::Monomial, b::Monomial)
The "grevlex" ordering, where a<b̀
if degree(a)>degree(b)
or the degrees are equal but the last variable in a/b
occurs to a negative power.
#
Base.pairs
— Method.
pairs(p::Mvp)
returns the pairs monomial=>coefficient in p
.
#
LaurentPolynomials.Pol
— Method.
Pol(p::Mvp{T}) where T
converts the one-variable Mvp{T}
p
to a Pol{T}
. It is an error if p
has more than one variable, or this variable appears to non-integral powers.
julia> @Mvp x; @Pol q; Pol(x^2+x)
Pol{Int64}: q²+q
#
LaurentPolynomials.Pol
— Method.
Pol(p::Mvp,v::Symbol)
returns a polynomial whose coefficients are the coefficients of the Mvp
p
with respect to the variable v
(as Mvp
s). The variable v
should appear only with integral powers in p
.
julia> p=(x+y^(1//2))^3
Mvp{Int64,Rational{Int64}}: x³+3x²y½+3xy+y³⁄₂
julia> Pol(:q); Pol(p,:x)
Pol{Mvp{Int64, Rational{Int64}}}: q³+3y½q²+3yq+y³⁄₂
This can be used for instance to compute the discriminant of a polynomial with respect to one of its variables:
julia> p=x+y^2+x^3+y^3
Mvp{Int64}: x³+x+y³+y²
julia> discriminant(Pol(p,:x))
Mvp{Int64}: 27y⁶+54y⁵+27y⁴+4
#
PuiseuxPolynomials.Mvp
— Method.
Mvp(p::Pol[,v])
converts p
to an Mvp
, with the same variable name if v
omitted or the variable name v
.
julia> @Pol q
Pol{Int64}: q
julia> Mvp(q^2+q)
Mvp{Int64}: q²+q
julia> Mvp(q^2+q,:x)
Mvp{Int64}: x²+x
#
PuiseuxPolynomials.value
— Function.
`value(p::Mvp,:x₁=>v₁,:x₂=>v₂,...)`
̀(p::Mvp)(x₁=v₁,…,xₙ=vₙ)`
returns the value of p
when doing the simultaneous substitution of the variable :x1
by v1
, of x2
by v2
, …
julia> p=-2+7x^5*inv(y)
Mvp{Int64}: 7x⁵y⁻¹-2
julia> p(x=2)
Mvp{Int64}: -2+224y⁻¹
julia> p(y=1)
Mvp{Int64}: 7x⁵-2
julia> p(x=2,y=1)
Mvp{Int64}: 222
One should pay attention to the fact that the last value is not an integer, but a constant Mvp
(for consistency). See the function scalar
for how to convert such constants to their base ring.
julia> p(x=y)
Mvp{Int64}: 7y⁴-2
julia> p(x=y,y=x)
Mvp{Int64}: -2+7x⁻¹y⁵
Evaluating an Mvp
which is a Puiseux polynomial may cause calls to root
julia> p=x^(1//2)*y^(1//3)
Mvp{Int64,Rational{Int64}}: x½y⅓
julia> p(;x=y)
Mvp{Int64,Rational{Int64}}: y⅚
julia> p(;x=4)
Mvp{Int64,Rational{Int64}}: 2y⅓
julia> p(;y=2.0)
Mvp{Float64,Rational{Int64}}: 1.2599210498948732x½
#
Base.conj
— Function.
conj(p::Mvp)
acts on the coefficients of p
julia> @Mvp x;conj(im*x+1)
Mvp{Complex{Int64}}: (0 - 1im)x+1 + 0im
#
LaurentPolynomials.derivative
— Function.
The function 'derivative(p,v₁,…,vₙ)' returns the derivative of 'p' with respect to the variable given by the symbol 'v₁', then v₂
, ...
julia> @Mvp x,y;p=7x^5*y^-1-2
Mvp{Int64}: 7x⁵y⁻¹-2
julia> derivative(p,:x)
Mvp{Int64}: 35x⁴y⁻¹
julia> derivative(p,:y)
Mvp{Int64}: -7x⁵y⁻²
julia> derivative(p,:x,:y)
Mvp{Int64}: -35x⁴y⁻²
julia> p=x^(1//2)*y^(1//3)
Mvp{Int64,Rational{Int64}}: x½y⅓
julia> derivative(p,:x)
Mvp{Rational{Int64},Rational{Int64}}: (1//2)x⁻½y⅓
julia> derivative(p,:y)
Mvp{Rational{Int64},Rational{Int64}}: (1//3)x½y⁻⅔
julia> derivative(p,:z)
Mvp{Rational{Int64},Rational{Int64}}: 0
#
PuiseuxPolynomials.laurent_denominator
— Function.
laurent_denominator(p1,p2,…)
returns the unique monomial m
of minimal degree in each variable such that for all the Laurent polynomials p1,p2,…
the product m*pᵢ
has a positive degree in each variable.
julia> laurent_denominator(x^-1,y^-2+x^4)
Monomial{Int64}:xy²
#
Base.gcd
— Method.
gcd(p::Mvp, q::Mvp)
computes the gcd
of the 'Mvp' arguments. The arguments must be true polynomials.
julia> gcd((x+y)^2,x^2-y^2)
Mvp{Int64}: x+y
#
Base.lcm
— Method.
lcm(p1,p2,...)
Returns the Lcm of the Mvp
arguments. The arguments must be true polynomials.
julia> lcm(x^2-y^2,(x+y)^2)
Mvp{Int64}: -x³-x²y+xy²+y³
#
LaurentPolynomials.scalar
— Function.
scalar(p::Mvp)
If p
is a scalar, return that scalar, otherwise return nothing
.
julia> p=Mvp(:x)+1
Mvp{Int64}: x+1
julia> w=p(x=4)
Mvp{Int64}: 5
julia> scalar(w)
5
julia> typeof(scalar(w))
Int64
if p
is an array, then apply scalar
to its elements and return nothing
if it contains any Mvp
which is not a scalar.
#
Base.:^
— Method.
Base.:^(p,m;vars=variables(p))
Implements the action of a matrix on Mvp
s. vars
should be a list of symbols representing variables. The polynomial p
is changed by simultaneous substitution in it of vᵢ
by (v×m)ᵢ
where v
is the row vector with entries Mvp(vᵢ)
. If vars
is omitted, it is taken to be variables(p)
.
julia> @Mvp x,y
julia> (x+y)^[1 2;3 1]
Mvp{Int64}: 3x+4y
#
LaurentPolynomials.Frac
— Method.
Frac(a::Mvp,b::Mvp;pol=false,prime=false)
Mvp
s a
and b
are promoted to same coefficient type, and checked for being true polynomials without common monomial factor (unless pol=true
asserts that this is already the case) and unless prime=true
they are made prime to each other by dividing by their gcd.
#
PuiseuxPolynomials.grobner_basis
— Function.
grobner_basis(F;lt=lex)
computes a Gröbner basis of the polynomial ideal generated by the Mvp
s given by the vector F
. The keyword lt
describes the monomial ordering to use.
julia> @Mvp x,y,z; F=[x^2+y^2+z^2-1,x^2-y+z^2,x-z]
3-element Vector{Mvp{Int64, Int64}}:
x²+y²+z²-1
x²-y+z²
x-z
julia> grobner_basis(F)
3-element Vector{Mvp{Rational{Int64}, Int64}}:
(1//1)x+(-1//1)z
(-1//1)y+(2//1)z²
(4//1)z⁴+(2//1)z²-1//1
julia> grobner_basis(F;lt=grlex)
3-element Vector{Mvp{Rational{Int64}, Int64}}:
(1//1)x+(-1//1)z
(1//1)y²+(1//1)y-1//1
(-1//1)y+(2//1)z²
julia> grobner_basis(F;lt=grevlex)
3-element Vector{Mvp{Rational{Int64}, Int64}}:
(1//1)x+(-1//1)z
(1//1)y²+(1//1)y-1//1
(2//1)x²+(-1//1)y
There is no keyword to change the ordering of the variables. We suggest to use rename_variables
for this purpose.
#
PuiseuxPolynomials.rename_variables
— Function.
rename_variables(p,v)
renames variables(p)
to v
rename_variables(p,l::Pair{Symbol,Symbol}...)
renames the variables in p
as indicated by the pairs in l
.
julia> @Mvp x,y,z; p=x+y+z
Mvp{Int64}: x+y+z
julia> rename_variables(p,Symbol.('A':'Z'))
Mvp{Int64}: A+B+C
julia> rename_variables(p,[:U,:V])
Mvp{Int64}: U+V+z
julia> rename_variables(p,:x=>:U,:z=>:V) # faster than p(;x=Mvp(:U),z=Mvp(:V))
Mvp{Int64}: U+V+y