Skip to content

LimeWrapper provides a simple wrapper around the lime package in Python

Notifications You must be signed in to change notification settings

joelprince25/limewrapper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LIMEWRAPPER

LimeWrapper provides a simple wrapper around the lime package. Lime provides local explanations of the predictions of h2o or sklearn models. While the lime documentation already provides tutorials to do this, the goal of this wrapper is to abstract away the feature engineering processes required for lime. This, however, requires model re-training if you have categorical features (no re-training required if all features are continuous). If that's resource or time intensive, then my recommendation would be directly following the tutorials by the lime authors available in their github repository.

Please refer to the Jupyter notebook in the example folder to see a classification and regression model explanation example.

How to install the package


Clone the repository and cd into it.

To install package dependencies run:

pip install --trusted-host pypi.python.org -r requirements.txt

To install the limewrapper package run:

python setup.py install

Lime Resources


  1. Lime Paper
  2. Summary: How Lime Works?
  3. Lime Tutorials

How to contribute


For small bug-fixes and new features, create a separate branch, make necessary commits and create a pull request.

Upcoming Features


  1. Support for sklearn models.
  2. Function to get top n explainable features for entire test set.

About

LimeWrapper provides a simple wrapper around the lime package in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published