Skip to content

Commit

Permalink
CLN/BUG: fix ndarray assignment may cause unexpected cast
Browse files Browse the repository at this point in the history
  • Loading branch information
sinhrks authored and jreback committed Jul 11, 2017
1 parent a9421af commit 37c1ec8
Show file tree
Hide file tree
Showing 11 changed files with 309 additions and 77 deletions.
4 changes: 4 additions & 0 deletions doc/source/whatsnew/v0.21.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,7 @@ the target. Now, a ``ValueError`` will be raised when such an input is passed in
- Compression defaults in HDF stores now follow pytable standards. Default is no compression and if ``complib`` is missing and ``complevel`` > 0 ``zlib`` is used (:issue:`15943`)
- ``Index.get_indexer_non_unique()`` now returns a ndarray indexer rather than an ``Index``; this is consistent with ``Index.get_indexer()`` (:issue:`16819`)


.. _whatsnew_0210.api:

Other API Changes
Expand Down Expand Up @@ -147,6 +148,9 @@ Bug Fixes
Conversion
^^^^^^^^^^

- Bug in assignment against datetime-like data with ``int`` may incorrectly converted to datetime-like (:issue:`14145`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)



Indexing
Expand Down
24 changes: 20 additions & 4 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,7 @@ def maybe_promote(dtype, fill_value=np.nan):
else:
if issubclass(dtype.type, np.datetime64):
try:
fill_value = lib.Timestamp(fill_value).value
fill_value = Timestamp(fill_value).value
except:
# the proper thing to do here would probably be to upcast
# to object (but numpy 1.6.1 doesn't do this properly)
Expand Down Expand Up @@ -349,9 +349,9 @@ def infer_dtype_from_scalar(val, pandas_dtype=False):

# a 1-element ndarray
if isinstance(val, np.ndarray):
msg = "invalid ndarray passed to _infer_dtype_from_scalar"
if val.ndim != 0:
raise ValueError(
"invalid ndarray passed to _infer_dtype_from_scalar")
raise ValueError(msg)

dtype = val.dtype
val = val.item()
Expand Down Expand Up @@ -552,7 +552,7 @@ def conv(r, dtype):
if isnull(r):
pass
elif dtype == _NS_DTYPE:
r = lib.Timestamp(r)
r = Timestamp(r)
elif dtype == _TD_DTYPE:
r = _coerce_scalar_to_timedelta_type(r)
elif dtype == np.bool_:
Expand Down Expand Up @@ -1026,3 +1026,19 @@ def find_common_type(types):
return np.object

return np.find_common_type(types, [])


def _cast_scalar_to_array(shape, value, dtype=None):
"""
create np.ndarray of specified shape and dtype, filled with values
"""

if dtype is None:
dtype, fill_value = _infer_dtype_from_scalar(value)
else:
fill_value = value

values = np.empty(shape, dtype=dtype)
values.fill(fill_value)

return values
21 changes: 8 additions & 13 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@
is_named_tuple)
from pandas.core.dtypes.missing import isnull, notnull


from pandas.core.common import (_try_sort,
_default_index,
_values_from_object,
Expand Down Expand Up @@ -385,15 +386,10 @@ def __init__(self, data=None, index=None, columns=None, dtype=None,
raise_with_traceback(exc)

if arr.ndim == 0 and index is not None and columns is not None:
if isinstance(data, compat.string_types) and dtype is None:
dtype = np.object_
if dtype is None:
dtype, data = infer_dtype_from_scalar(data)

values = np.empty((len(index), len(columns)), dtype=dtype)
values.fill(data)
mgr = self._init_ndarray(values, index, columns, dtype=dtype,
copy=False)
values = _cast_scalar_to_array((len(index), len(columns)),
data, dtype=dtype)
mgr = self._init_ndarray(values, index, columns,
dtype=values.dtype, copy=False)
else:
raise ValueError('DataFrame constructor not properly called!')

Expand Down Expand Up @@ -507,7 +503,7 @@ def _get_axes(N, K, index=index, columns=columns):
values = _prep_ndarray(values, copy=copy)

if dtype is not None:
if values.dtype != dtype:
if not is_dtype_equal(values.dtype, dtype):
try:
values = values.astype(dtype)
except Exception as orig:
Expand Down Expand Up @@ -2688,9 +2684,8 @@ def reindexer(value):

else:
# upcast the scalar
dtype, value = infer_dtype_from_scalar(value)
value = np.repeat(value, len(self.index)).astype(dtype)
value = maybe_cast_to_datetime(value, dtype)
value = _cast_scalar_to_array(len(self.index), value)
value = _possibly_cast_to_datetime(value, value.dtype)

# return internal types directly
if is_extension_type(value):
Expand Down
120 changes: 88 additions & 32 deletions pandas/core/internals.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,8 @@ def fillna(self, value, limit=None, inplace=False, downcast=None,

# fillna, but if we cannot coerce, then try again as an ObjectBlock
try:
values, _, value, _ = self._try_coerce_args(self.values, value)
values, _, _, _ = self._try_coerce_args(self.values, value)
# value may be converted to internal, thus drop
blocks = self.putmask(mask, value, inplace=inplace)
blocks = [b.make_block(values=self._try_coerce_result(b.values))
for b in blocks]
Expand Down Expand Up @@ -682,8 +683,43 @@ def setitem(self, indexer, value, mgr=None):
if self.is_numeric:
value = np.nan

# coerce args
values, _, value, _ = self._try_coerce_args(self.values, value)
# coerce if block dtype can store value
values = self.values
try:
values, _, value, _ = self._try_coerce_args(values, value)
# can keep its own dtype
if hasattr(value, 'dtype') and is_dtype_equal(values.dtype,
value.dtype):
dtype = self.dtype
else:
dtype = 'infer'

except (TypeError, ValueError):
# current dtype cannot store value, coerce to common dtype
find_dtype = False

if hasattr(value, 'dtype'):
dtype = value.dtype
find_dtype = True

elif is_scalar(value):
if isnull(value):
# NaN promotion is handled in latter path
dtype = False
else:
dtype, _ = _infer_dtype_from_scalar(value,
pandas_dtype=True)
find_dtype = True
else:
dtype = 'infer'

if find_dtype:
dtype = _find_common_type([values.dtype, dtype])
if not is_dtype_equal(self.dtype, dtype):
b = self.astype(dtype)
return b.setitem(indexer, value, mgr=mgr)

# value must be storeable at this moment
arr_value = np.array(value)

# cast the values to a type that can hold nan (if necessary)
Expand Down Expand Up @@ -713,19 +749,8 @@ def setitem(self, indexer, value, mgr=None):
raise ValueError("cannot set using a slice indexer with a "
"different length than the value")

try:

def _is_scalar_indexer(indexer):
# return True if we are all scalar indexers

if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
indexer = tuple([indexer])
return all([is_scalar(idx) for idx in indexer])
return False

def _is_empty_indexer(indexer):
# return a boolean if we have an empty indexer
def _is_scalar_indexer(indexer):
# return True if we are all scalar indexers

if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
Expand Down Expand Up @@ -777,23 +802,43 @@ def _is_empty_indexer(indexer):
raise
except TypeError:

# cast to the passed dtype if possible
# otherwise raise the original error
try:
# e.g. we are uint32 and our value is uint64
# this is for compat with older numpies
block = self.make_block(transf(values.astype(value.dtype)))
return block.setitem(indexer=indexer, value=value, mgr=mgr)
def _is_empty_indexer(indexer):
# return a boolean if we have an empty indexer

except:
pass

raise
if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
indexer = tuple([indexer])
return any(isinstance(idx, np.ndarray) and len(idx) == 0
for idx in indexer)
return False

except Exception:
# empty indexers
# 8669 (empty)
if _is_empty_indexer(indexer):
pass

return [self]
# setting a single element for each dim and with a rhs that could
# be say a list
# GH 6043
elif _is_scalar_indexer(indexer):
values[indexer] = value

# if we are an exact match (ex-broadcasting),
# then use the resultant dtype
elif (len(arr_value.shape) and
arr_value.shape[0] == values.shape[0] and
np.prod(arr_value.shape) == np.prod(values.shape)):
values[indexer] = value
values = values.astype(arr_value.dtype)

# set
else:
values[indexer] = value

# coerce and try to infer the dtypes of the result
values = self._try_coerce_and_cast_result(values, dtype)
block = self.make_block(transf(values), fastpath=True)
return block

def putmask(self, mask, new, align=True, inplace=False, axis=0,
transpose=False, mgr=None):
Expand Down Expand Up @@ -1264,6 +1309,7 @@ def func(cond, values, other):

values, values_mask, other, other_mask = self._try_coerce_args(
values, other)

try:
return self._try_coerce_result(expressions.where(
cond, values, other, raise_on_error=True))
Expand Down Expand Up @@ -1543,6 +1589,7 @@ def putmask(self, mask, new, align=True, inplace=False, axis=0,
new = new[mask]

mask = _safe_reshape(mask, new_values.shape)

new_values[mask] = new
new_values = self._try_coerce_result(new_values)
return [self.make_block(values=new_values)]
Expand Down Expand Up @@ -1712,7 +1759,7 @@ def fillna(self, value, **kwargs):

# allow filling with integers to be
# interpreted as seconds
if not isinstance(value, np.timedelta64) and is_integer(value):
if not isinstance(value, np.timedelta64):
value = Timedelta(value, unit='s')
return super(TimeDeltaBlock, self).fillna(value, **kwargs)

Expand Down Expand Up @@ -1949,6 +1996,15 @@ def _maybe_downcast(self, blocks, downcast=None):
def _can_hold_element(self, element):
return True

def _try_coerce_args(self, values, other):
""" provide coercion to our input arguments """

if isinstance(other, ABCDatetimeIndex):
# to store DatetimeTZBlock as object
other = other.asobject.values

return values, False, other, False

def _try_cast(self, element):
return element

Expand Down Expand Up @@ -2288,8 +2344,6 @@ def _try_coerce_args(self, values, other):
"naive Block")
other_mask = isnull(other)
other = other.asm8.view('i8')
elif hasattr(other, 'dtype') and is_integer_dtype(other):
other = other.view('i8')
else:
try:
other = np.asarray(other)
Expand Down Expand Up @@ -2466,6 +2520,8 @@ def _try_coerce_args(self, values, other):
raise ValueError("incompatible or non tz-aware value")
other_mask = isnull(other)
other = other.value
else:
raise TypeError

return values, values_mask, other, other_mask

Expand Down
12 changes: 4 additions & 8 deletions pandas/core/panel.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,11 +178,9 @@ def _init_data(self, data, copy, dtype, **kwargs):
copy = False
dtype = None
elif is_scalar(data) and all(x is not None for x in passed_axes):
if dtype is None:
dtype, data = infer_dtype_from_scalar(data)
values = np.empty([len(x) for x in passed_axes], dtype=dtype)
values.fill(data)
mgr = self._init_matrix(values, passed_axes, dtype=dtype,
values = _cast_scalar_to_array([len(x) for x in passed_axes],
data, dtype=dtype)
mgr = self._init_matrix(values, passed_axes, dtype=values.dtype,
copy=False)
copy = False
else: # pragma: no cover
Expand Down Expand Up @@ -582,9 +580,7 @@ def __setitem__(self, key, value):
shape[1:], tuple(map(int, value.shape))))
mat = np.asarray(value)
elif is_scalar(value):
dtype, value = infer_dtype_from_scalar(value)
mat = np.empty(shape[1:], dtype=dtype)
mat.fill(value)
mat = _cast_scalar_to_array(shape[1:], value)
else:
raise TypeError('Cannot set item of type: %s' % str(type(value)))

Expand Down
Loading

0 comments on commit 37c1ec8

Please sign in to comment.