Skip to content

Commit

Permalink
BUG: Made SparseDataFrame.fillna() fill all NaNs
Browse files Browse the repository at this point in the history
A continuation of pandas-dev#16178
closes pandas-dev#16112
closes pandas-dev#16178

Author: Kernc <kerncece@gmail.com>
Author: keitakurita <kris337jbn@yahoo.co.jp>

This patch had conflicts when merged, resolved by
Committer: Jeff Reback <jeff@reback.net>

Closes pandas-dev#16892 from kernc/sparse-fillna and squashes the following commits:

c1cd33e [Kernc] fixup! BUG: Made SparseDataFrame.fillna() fill all NaNs
2974232 [Kernc] fixup! BUG: Made SparseDataFrame.fillna() fill all NaNs
4bc01a1 [keitakurita] BUG: Made SparseDataFrame.fillna() fill all NaNs
  • Loading branch information
kernc authored and jreback committed Jul 22, 2017
1 parent 09108fa commit ee6412a
Show file tree
Hide file tree
Showing 3 changed files with 43 additions and 9 deletions.
4 changes: 3 additions & 1 deletion doc/source/whatsnew/v0.21.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -259,7 +259,7 @@ Indexing
- Fixes bug where indexing with ``np.inf`` caused an ``OverflowError`` to be raised (:issue:`16957`)
- Bug in reindexing on an empty ``CategoricalIndex`` (:issue:`16770`)
- Fixes ``DataFrame.loc`` for setting with alignment and tz-aware ``DatetimeIndex`` (:issue:`16889`)

I/O
^^^

Expand All @@ -284,7 +284,9 @@ Groupby/Resample/Rolling

Sparse
^^^^^^

- Bug in ``SparseSeries`` raises ``AttributeError`` when a dictionary is passed in as data (:issue:`16905`)
- Bug in :func:`SparseDataFrame.fillna` not filling all NaNs when frame was instantiated from SciPy sparse matrix (:issue:`16112`)


Reshaping
Expand Down
13 changes: 5 additions & 8 deletions pandas/core/sparse/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -595,14 +595,11 @@ def fillna(self, value, downcast=None):
if issubclass(self.dtype.type, np.floating):
value = float(value)

if self._null_fill_value:
return self._simple_new(self.sp_values, self.sp_index,
fill_value=value)
else:
new_values = self.sp_values.copy()
new_values[isnull(new_values)] = value
return self._simple_new(new_values, self.sp_index,
fill_value=self.fill_value)
new_values = np.where(isnull(self.sp_values), value, self.sp_values)
fill_value = value if self._null_fill_value else self.fill_value

return self._simple_new(new_values, self.sp_index,
fill_value=fill_value)

def sum(self, axis=0, *args, **kwargs):
"""
Expand Down
35 changes: 35 additions & 0 deletions pandas/tests/sparse/test_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -1271,6 +1271,41 @@ def test_from_scipy_correct_ordering(spmatrix):
tm.assert_frame_equal(sdf.to_dense(), expected.to_dense())


def test_from_scipy_fillna(spmatrix):
# GH 16112
tm.skip_if_no_package('scipy')

arr = np.eye(3)
arr[1:, 0] = np.nan

try:
spm = spmatrix(arr)
assert spm.dtype == arr.dtype
except (TypeError, AssertionError):
# If conversion to sparse fails for this spmatrix type and arr.dtype,
# then the combination is not currently supported in NumPy, so we
# can just skip testing it thoroughly
return

sdf = pd.SparseDataFrame(spm).fillna(-1.0)

# Returning frame should fill all nan values with -1.0
expected = pd.SparseDataFrame({
0: pd.SparseSeries([1., -1, -1]),
1: pd.SparseSeries([np.nan, 1, np.nan]),
2: pd.SparseSeries([np.nan, np.nan, 1]),
}, default_fill_value=-1)

# fill_value is expected to be what .fillna() above was called with
# We don't use -1 as initial fill_value in expected SparseSeries
# construction because this way we obtain "compressed" SparseArrays,
# avoiding having to construct them ourselves
for col in expected:
expected[col].fill_value = -1

tm.assert_sp_frame_equal(sdf, expected)


class TestSparseDataFrameArithmetic(object):

def test_numeric_op_scalar(self):
Expand Down

0 comments on commit ee6412a

Please sign in to comment.