Skip to content

Exploration of the latent space of generative models on Lung-CT scans

License

Notifications You must be signed in to change notification settings

julschoen/Latent-Space-Exploration-CT

Repository files navigation

Interpreting Latent Spaces of Generative Models for Medical Images using Unsupervised Methods

Authors implementation of Interpreting Latent Spaces of Generative Models for Medical Images Using Unsupervised Methods (DGM4MICCAI 2022)

  • Data: LIDC [1]
  • Implementation of a DCGAN and a Res-Net based CNN-VAE
  • Model agnostic unsupervised exploration of the latent space of a generative model [2]

How To Run

Results

  • We see non-trivial image transformations on medical images.
  • Many such directions are provided in Animations
  • Some examples are the following:

An image

VAE - z-Position

An image

VAE - y-Position

An image

DCGAN - Breast Size

An image

DCGAN - Rotation

An image

DCGAN - Thickness

Citation

@InProceedings{schon22interpreting,
author="Sch{\"o}n, Julian
and Selvan, Raghavendra
and Petersen, Jens",
title="Interpreting Latent Spaces of Generative Models for Medical Images Using Unsupervised Methods",
booktitle="Deep Generative Models",
year="2022",
publisher="Springer Nature Switzerland",
pages="24--33",
isbn="978-3-031-18576-2"
}

Credits

The VAE implementation is based on https://github.com/LukeDitria/CNN-VAE
The Latent Direction Discovery is based on https://github.com/anvoynov/GANLatentDiscovery

[1] Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., MacMahon, H., Van Beek, E. J. R., Yankelevitz, D., Biancardi, A. M., Bland, P. H., Brown, M. S., Engelmann, R. M., Laderach, G. E., Max, D., Pais, R. C. , Qing, D. P. Y. , Roberts, R. Y., Smith, A. R., Starkey, A., Batra, P., Caligiuri, P., Farooqi, A., Gladish, G. W., Jude, C. M., Munden, R. F., Petkovska, I., Quint, L. E., Schwartz, L. H., Sundaram, B., Dodd, L. E., Fenimore, C., Gur, D., Petrick, N., Freymann, J., Kirby, J., Hughes, B., Casteele, A. V., Gupte, S., Sallam, M., Heath, M. D., Kuhn, M. H., Dharaiya, E., Burns, R., Fryd, D. S., Salganicoff, M., Anand, V., Shreter, U., Vastagh, S., Croft, B. Y., Clarke, L. P. (2015). Data From LIDC-IDRI [Data set]. The Cancer Imaging Archive. (https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX)

[2] Voynov, A., & Babenko, A. (2020, November). Unsupervised discovery of interpretable directions in the gan latent space. In International Conference on Machine Learning (pp. 9786-9796). PMLR.

About

Exploration of the latent space of generative models on Lung-CT scans

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages