Skip to content

Helper function for Event history analysis, including tidying functions for coxme

License

Notifications You must be signed in to change notification settings

junkka/ehahelper

Repository files navigation

Event history analysis helper package

Helper functions for event history analysis with the survival package.

Install

Install from GitHub repository.

library(devtools)
install_github('junkka/ehahelper')

Functions

ggsurv

Make a data.frame of a survfit or coxph object for visualization with ggplot2.

library(ehahelper)
library(survival)
library(ggplot2)
surv_object <- coxph(Surv(time, status) ~ strata(x), data = aml)
ggplot(ggsurv(surv_object), aes(time, surv, color=strata)) + geom_step()

gg_zph

ggplot2 implementation for visualizing scaled Schoenfield residuals form a cox.zph object.

bladder1 <- bladder[bladder$enum < 5, ] 
fit <- coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum) + 
          cluster(id), bladder1)
x <- cox.zph(fit, transform = "identity")
gg_zph(x)
## `geom_smooth()` using method = 'loess'

gg_zph(x, log = TRUE)
## `geom_smooth()` using method = 'loess'

coxme tidyer

Convert coxme objects to tidy format.

library(broom)
library(coxme)
fit <- coxme(Surv(y, uncens) ~ trt + (1|center), eortc)
knitr::kable(tidy(fit, exp = T), digits = 3)
term estimate std.error statistic p.value conf.low conf.high
trt 2.031 0.064 11.03 0 1.791 2.304
fit_g <- glance(fit)
knitr::kable(as.data.frame(t(fit_g)), digits = 3)
V1
n 2323.000
events 1463.000
Chisq 236.110
df 2.000
logLik -10478.839
p 0.000
AIC 21015.051
BIC 21166.750
random_n_center 37.000
random_sd_center 0.329
random_variance_center 0.108

coxme augment

Using a coxme model, add fitted values and standard errors to original dataset.

eortc_augmented <- augment(fit, eortc)

knitr::kable(head(eortc_augmented))
y uncens center trt .fitted .se.fit
2 506.1603 1 1 1 0.2037681 0.0184739
3 294.3800 1 1 1 0.2037681 0.0184739
4 383.9152 1 1 0 -0.5048446 0.0457700
5 2441.8338 0 1 0 -0.5048446 0.0457700
6 2442.2923 0 1 0 -0.5048446 0.0457700
7 312.3571 1 1 1 0.2037681 0.0184739

coxme predict

Get predicted vales based on a mixed-effects Cox model, fitted using the coxme package. Extends the standard predict.coxme function by allowing for new data, and by calculating relative risks, either overall or within stratum.

new_data <- data.frame(trt = unique(eortc$trt))

predict_coxme(fit, newdata = new_data, type = "risk")
##         1         2 
## 1.2260138 0.6035994

About

Helper function for Event history analysis, including tidying functions for coxme

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages