Skip to content

keetsky/Net_ghostVLAD-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NetVLAD-pytorch

Pytorch implementation of NetVLAD & Online Hardest Triplet Loss. In NetVLAD, broadcasting is used to calculate residuals of clusters and it makes whole calculation time much faster.

NetVLAD: https://arxiv.org/abs/1511.07247

In Defense of the Triplet Loss for Person Re-Identification: https://arxiv.org/abs/1703.07737 https://omoindrot.github.io/triplet-loss

Usage

import torch
import torch.nn as nn
from torch.autograd import Variable

from netvlad import NetVLAD
from netvlad import EmbedNet
from hard_triplet_loss import HardTripletLoss
from torchvision.models import resnet18


# Discard layers at the end of base network
encoder = resnet18(pretrained=True)
base_model = nn.Sequential(
    encoder.conv1,
    encoder.bn1,
    encoder.relu,
    encoder.maxpool,
    encoder.layer1,
    encoder.layer2,
    encoder.layer3,
    encoder.layer4,
])
dim = list(base_model.parameters())[-1].shape[0]  # last channels (512)

# Define model for embedding
net_vlad = NetVLAD(num_clusters=32, dim=dim, alpha=1.0)
model = EmbedNet(base_model, net_vlad).cuda()

# Define loss
criterion = HardTripletLoss(margin=0.1).cuda()

# This is just toy example. Typically, the number of samples in each classes are 4.
labels = torch.randint(0, 10, (40, )).long()
x = torch.rand(40, 3, 128, 128).cuda()
output = model(x)

triplet_loss = criterion(output, labels)

ghostVlAD

use fc features contain NetVLAD and ghostVLAD RUN

python ghostVLAD.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages