Skip to content

kim-jin-seop/playing_atari_with_deep_reinforcement_learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

INDEX

Project Purpose

openaigym video 0 7148 video000512 openaigym video 0 43520 video001000 openaigym video 0 166456 video000512 openaigym video 0 64488 video003000 openaigym video 1 7148 video002000

The ultimate goal of this project is to implement atari game player by reinforcement learning algorithm DQN.

Environment

  • OS : Window 11
  • Python : 3.6
  • Use Anaconda3
  • Use Pytorch
  • Use gym(Open AI)

How to set env

  1. You should install Anaconda3 -> Anaconda download link
  2. Create Anaconda virtual env and turn on the env
# create env
conda create -n atari_openai python=3.6
# activate env
conda activate atari_test
  1. Install required pakages by conda
# pytorch(cpu or gpu)
conda install pytorch torchvision torchaudio cpuonly -c pytorch # if your pc use only cpu
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge # gpu

# opencv 
conda install -c conda-forge opencv

# gym
conda install -c conda-forge gym

# atari_py
conda install -c conda-forge atari_py
  1. Install Roms(Roms download Link) and unzip a file
  2. Enter the following command.
python -m atari_py.import_roms <path> # path ex) ~\Roms\ROMS

Implements

*I referred to the paper(Playing Atari with Deep Reinforcement Learning - DeepMind).

Preprocessing

Raw Atari frame ,which are 210 X 160 pixel images with a 128 color palette, is computationally demanding. So we should apply preprocessing for reducing the input dimensionality. The raw frames are preprocessed by converting RGB to gray-scale and resizing it to a 84 x 84 pixel image using opencv library.

It is implemented in utils.py as make_env function.

Algorithm

algorithm
It is implemented in utils.py as experience function.

Model

algorithm
It is implemented in network.py.

Performance

  • Result of learning 7 atari games as DQN experiment_1
  • Hyper parameter epsilon tuning for BreakOut game

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published