-
Notifications
You must be signed in to change notification settings - Fork 322
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
About 5-15% speedup. More on smaller blocks.
- Loading branch information
Showing
3 changed files
with
381 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
// Copyright 2009 The Go Authors. All rights reserved. | ||
// Use of this source code is governed by a BSD-style | ||
// license that can be found in the LICENSE file. | ||
|
||
package flate | ||
|
||
// Sort sorts data. | ||
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to | ||
// data.Less and data.Swap. The sort is not guaranteed to be stable. | ||
func sortByFreq(data []literalNode) { | ||
n := len(data) | ||
quickSortByFreq(data, 0, n, maxDepth(n)) | ||
} | ||
|
||
func quickSortByFreq(data []literalNode, a, b, maxDepth int) { | ||
for b-a > 12 { // Use ShellSort for slices <= 12 elements | ||
if maxDepth == 0 { | ||
heapSort(data, a, b) | ||
return | ||
} | ||
maxDepth-- | ||
mlo, mhi := doPivotByFreq(data, a, b) | ||
// Avoiding recursion on the larger subproblem guarantees | ||
// a stack depth of at most lg(b-a). | ||
if mlo-a < b-mhi { | ||
quickSortByFreq(data, a, mlo, maxDepth) | ||
a = mhi // i.e., quickSortByFreq(data, mhi, b) | ||
} else { | ||
quickSortByFreq(data, mhi, b, maxDepth) | ||
b = mlo // i.e., quickSortByFreq(data, a, mlo) | ||
} | ||
} | ||
if b-a > 1 { | ||
// Do ShellSort pass with gap 6 | ||
// It could be written in this simplified form cause b-a <= 12 | ||
for i := a + 6; i < b; i++ { | ||
if data[i].freq == data[i-6].freq && data[i].literal < data[i-6].literal || data[i].freq < data[i-6].freq { | ||
data[i], data[i-6] = data[i-6], data[i] | ||
} | ||
} | ||
insertionSortByFreq(data, a, b) | ||
} | ||
} | ||
|
||
// siftDownByFreq implements the heap property on data[lo, hi). | ||
// first is an offset into the array where the root of the heap lies. | ||
func siftDownByFreq(data []literalNode, lo, hi, first int) { | ||
root := lo | ||
for { | ||
child := 2*root + 1 | ||
if child >= hi { | ||
break | ||
} | ||
if child+1 < hi && (data[first+child].freq == data[first+child+1].freq && data[first+child].literal < data[first+child+1].literal || data[first+child].freq < data[first+child+1].freq) { | ||
child++ | ||
} | ||
if data[first+root].freq == data[first+child].freq && data[first+root].literal > data[first+child].literal || data[first+root].freq > data[first+child].freq { | ||
return | ||
} | ||
data[first+root], data[first+child] = data[first+child], data[first+root] | ||
root = child | ||
} | ||
} | ||
func doPivotByFreq(data []literalNode, lo, hi int) (midlo, midhi int) { | ||
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow. | ||
if hi-lo > 40 { | ||
// Tukey's ``Ninther,'' median of three medians of three. | ||
s := (hi - lo) / 8 | ||
medianOfThreeSortByFreq(data, lo, lo+s, lo+2*s) | ||
medianOfThreeSortByFreq(data, m, m-s, m+s) | ||
medianOfThreeSortByFreq(data, hi-1, hi-1-s, hi-1-2*s) | ||
} | ||
medianOfThreeSortByFreq(data, lo, m, hi-1) | ||
|
||
// Invariants are: | ||
// data[lo] = pivot (set up by ChoosePivot) | ||
// data[lo < i < a] < pivot | ||
// data[a <= i < b] <= pivot | ||
// data[b <= i < c] unexamined | ||
// data[c <= i < hi-1] > pivot | ||
// data[hi-1] >= pivot | ||
pivot := lo | ||
a, c := lo+1, hi-1 | ||
|
||
for ; a < c && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { | ||
} | ||
b := a | ||
for { | ||
for ; b < c && (data[pivot].freq == data[b].freq && data[pivot].literal > data[b].literal || data[pivot].freq > data[b].freq); b++ { // data[b] <= pivot | ||
} | ||
for ; b < c && (data[pivot].freq == data[c-1].freq && data[pivot].literal < data[c-1].literal || data[pivot].freq < data[c-1].freq); c-- { // data[c-1] > pivot | ||
} | ||
if b >= c { | ||
break | ||
} | ||
// data[b] > pivot; data[c-1] <= pivot | ||
data[b], data[c-1] = data[c-1], data[b] | ||
b++ | ||
c-- | ||
} | ||
// If hi-c<3 then there are duplicates (by property of median of nine). | ||
// Let's be a bit more conservative, and set border to 5. | ||
protect := hi-c < 5 | ||
if !protect && hi-c < (hi-lo)/4 { | ||
// Lets test some points for equality to pivot | ||
dups := 0 | ||
if data[pivot].freq == data[hi-1].freq && data[pivot].literal > data[hi-1].literal || data[pivot].freq > data[hi-1].freq { // data[hi-1] = pivot | ||
data[c], data[hi-1] = data[hi-1], data[c] | ||
c++ | ||
dups++ | ||
} | ||
if data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq { // data[b-1] = pivot | ||
b-- | ||
dups++ | ||
} | ||
// m-lo = (hi-lo)/2 > 6 | ||
// b-lo > (hi-lo)*3/4-1 > 8 | ||
// ==> m < b ==> data[m] <= pivot | ||
if data[m].freq == data[pivot].freq && data[m].literal > data[pivot].literal || data[m].freq > data[pivot].freq { // data[m] = pivot | ||
data[m], data[b-1] = data[b-1], data[m] | ||
b-- | ||
dups++ | ||
} | ||
// if at least 2 points are equal to pivot, assume skewed distribution | ||
protect = dups > 1 | ||
} | ||
if protect { | ||
// Protect against a lot of duplicates | ||
// Add invariant: | ||
// data[a <= i < b] unexamined | ||
// data[b <= i < c] = pivot | ||
for { | ||
for ; a < b && (data[b-1].freq == data[pivot].freq && data[b-1].literal > data[pivot].literal || data[b-1].freq > data[pivot].freq); b-- { // data[b] == pivot | ||
} | ||
for ; a < b && (data[a].freq == data[pivot].freq && data[a].literal < data[pivot].literal || data[a].freq < data[pivot].freq); a++ { // data[a] < pivot | ||
} | ||
if a >= b { | ||
break | ||
} | ||
// data[a] == pivot; data[b-1] < pivot | ||
data[a], data[b-1] = data[b-1], data[a] | ||
a++ | ||
b-- | ||
} | ||
} | ||
// Swap pivot into middle | ||
data[pivot], data[b-1] = data[b-1], data[pivot] | ||
return b - 1, c | ||
} | ||
|
||
// Insertion sort | ||
func insertionSortByFreq(data []literalNode, a, b int) { | ||
for i := a + 1; i < b; i++ { | ||
for j := i; j > a && (data[j].freq == data[j-1].freq && data[j].literal < data[j-1].literal || data[j].freq < data[j-1].freq); j-- { | ||
data[j], data[j-1] = data[j-1], data[j] | ||
} | ||
} | ||
} | ||
|
||
// quickSortByFreq, loosely following Bentley and McIlroy, | ||
// ``Engineering a Sort Function,'' SP&E November 1993. | ||
|
||
// medianOfThreeSortByFreq moves the median of the three values data[m0], data[m1], data[m2] into data[m1]. | ||
func medianOfThreeSortByFreq(data []literalNode, m1, m0, m2 int) { | ||
// sort 3 elements | ||
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq { | ||
data[m1], data[m0] = data[m0], data[m1] | ||
} | ||
// data[m0] <= data[m1] | ||
if data[m2].freq == data[m1].freq && data[m2].literal < data[m1].literal || data[m2].freq < data[m1].freq { | ||
data[m2], data[m1] = data[m1], data[m2] | ||
// data[m0] <= data[m2] && data[m1] < data[m2] | ||
if data[m1].freq == data[m0].freq && data[m1].literal < data[m0].literal || data[m1].freq < data[m0].freq { | ||
data[m1], data[m0] = data[m0], data[m1] | ||
} | ||
} | ||
// now data[m0] <= data[m1] <= data[m2] | ||
} |
Oops, something went wrong.