Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cherry pick #949: fix CrsMatrix raw ptr ctor #971

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 31 additions & 55 deletions src/sparse/KokkosSparse_CrsMatrix.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -554,7 +554,37 @@ class CrsMatrix {
OrdinalType* rowmap,
OrdinalType* cols)
{
ctor_impl (label, nrows, ncols, annz, val, rowmap, cols);
using Kokkos::Unmanaged;
using HostRowmap = Kokkos::View<SizeType*, Kokkos::HostSpace>;
using UnmanagedRowmap = Kokkos::View<const SizeType*, Kokkos::HostSpace, Kokkos::MemoryTraits<Unmanaged>>;
using UnmanagedEntries = Kokkos::View<const OrdinalType*, Kokkos::HostSpace, Kokkos::MemoryTraits<Unmanaged>>;
using UnmanagedValues = Kokkos::View<const ScalarType*, Kokkos::HostSpace, Kokkos::MemoryTraits<Unmanaged>>;
//Allocate device rowmap, entries, values views
typename row_map_type::non_const_type rowmapDevice(Kokkos::ViewAllocateWithoutInitializing("rowmap"), nrows + 1);
index_type entriesDevice(Kokkos::ViewAllocateWithoutInitializing("entries"), annz);
//given rowmap in ordinal_type, so may need to convert to size_type explicitly
HostRowmap rowmapConverted;
UnmanagedRowmap rowmapRaw;
if(!std::is_same<OrdinalType, SizeType>::value)
{
rowmapConverted = HostRowmap(Kokkos::ViewAllocateWithoutInitializing("rowmap raw"), nrows + 1);
for(OrdinalType i = 0; i <= nrows; i++)
rowmapConverted(i) = rowmap[i];
rowmapRaw = rowmapConverted;
}
else
{
rowmapRaw = UnmanagedRowmap((const SizeType*) rowmap, nrows + 1);
}
Kokkos::deep_copy(rowmapDevice, rowmapRaw);
UnmanagedEntries entriesRaw(cols, annz);
Kokkos::deep_copy(entriesDevice, entriesRaw);
//Construct graph and populate all members
this->numCols_ = ncols;
this->graph = StaticCrsGraphType(entriesDevice, rowmapDevice);
this->values = values_type(Kokkos::ViewAllocateWithoutInitializing("values"), annz);
UnmanagedValues valuesRaw(val, annz);
Kokkos::deep_copy(this->values, valuesRaw);

// FIXME (mfh 09 Aug 2013) Specialize this on the Device type.
// Only use cuSPARSE for the Cuda Device.
Expand Down Expand Up @@ -646,15 +676,6 @@ class CrsMatrix {
#endif // KOKKOS_USE_CUSPARSE
}

void
ctor_impl (const std::string &label,
const OrdinalType nrows,
const OrdinalType ncols,
const size_type annz,
ScalarType* val,
OrdinalType* rows,
OrdinalType* cols);

KOKKOS_INLINE_FUNCTION
OrdinalType
sumIntoValues (const OrdinalType rowi,
Expand Down Expand Up @@ -883,50 +904,5 @@ class CrsMatrix {
ordinal_type numCols_;
};

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

template< typename ScalarType , typename OrdinalType, class Device, class MemoryTraits, typename SizeType >
void
CrsMatrix<ScalarType , OrdinalType, Device, MemoryTraits, SizeType >::
ctor_impl (const std::string &label,
const OrdinalType nrows,
const OrdinalType ncols,
const size_type annz,
ScalarType* val,
OrdinalType* rows,
OrdinalType* cols)
{
std::string str = label;
values = values_type (str.append (".values"), annz);

numCols_ = ncols;

// FIXME (09 Aug 2013) CrsArray only takes std::vector for now.
// We'll need to fix that.
std::vector<int> row_lengths (nrows, 0);

// FIXME (mfh 21 Jun 2013) This calls for a parallel_for kernel.
for (OrdinalType i = 0; i < nrows; ++i) {
row_lengths[i] = rows[i + 1] - rows[i];
}

graph = Kokkos::create_staticcrsgraph<staticcrsgraph_type> (str.append (".graph"), row_lengths);
typename values_type::HostMirror h_values = Kokkos::create_mirror_view (values);
typename index_type::HostMirror h_entries = Kokkos::create_mirror_view (graph.entries);

// FIXME (mfh 21 Jun 2013) This needs to be a parallel copy.
// Furthermore, why are the arrays copied twice? -- once here, to a
// host view, and once below, in the deep copy?
for (size_type i = 0; i < annz; ++i) {
if (val) {
h_values(i) = val[i];
}
h_entries(i) = cols[i];
}

Kokkos::deep_copy (values, h_values);
Kokkos::deep_copy (graph.entries, h_entries);
}
}
#endif
49 changes: 44 additions & 5 deletions unit_test/sparse/Test_Sparse_CrsMatrix.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,15 @@
#include <Kokkos_Core.hpp>
#include <stdexcept>
#include "KokkosSparse_CrsMatrix.hpp"
#include "Kokkos_ArithTraits.hpp"

#ifndef kokkos_complex_double
#define kokkos_complex_double Kokkos::complex<double>
#define kokkos_complex_float Kokkos::complex<float>
#endif
// #ifndef kokkos_complex_double
// #define kokkos_complex_double Kokkos::complex<double>
// #define kokkos_complex_float Kokkos::complex<float>
// #endif

typedef Kokkos::complex<double> kokkos_complex_double;
typedef Kokkos::complex<float> kokkos_complex_float;

namespace Test{ // anonymous

Expand Down Expand Up @@ -189,6 +193,40 @@ testCrsMatrix ()
//printf ("A is %d by %d\n", A.numRows (), A.numCols ());
}

template <typename scalar_t, typename lno_t, typename size_type, typename device>
void
testCrsMatrixRawConstructor()
{
int nrows = 5;
//note: last 2 columns will be empty.
//This makes sure the ncols provided to constructor is preserved.
int ncols = 7;
int nnz = 9;
//NOTE: this is not a mistake, the raw ptr constructor takes rowmap as ordinal.
std::vector<lno_t> rowmap = {0, 0, 2, 5, 6, 9};
std::vector<lno_t> entries = {3, 4, 0, 1, 2, 2, 0, 3, 4};
std::vector<scalar_t> values;
for(int i = 0; i < nnz; i++)
values.push_back(Kokkos::ArithTraits<scalar_t>::one() * (1.0 * rand() / RAND_MAX));
KokkosSparse::CrsMatrix<scalar_t, lno_t, device, void, size_type> A(
"A", nrows, ncols, nnz, values.data(), rowmap.data(), entries.data());
EXPECT_EQ(A.numRows(), nrows);
EXPECT_EQ(A.numCols(), ncols);
EXPECT_EQ(A.nnz(), nnz);
//verify rowmap, entries, values: should all be identical to original raw arrays
//(except the rowmap elements are now size_type)
auto checkRowmap = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), A.graph.row_map);
auto checkEntries = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), A.graph.entries);
auto checkValues = Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace(), A.values);
for(int i = 0; i < nrows + 1; i++)
EXPECT_EQ(checkRowmap(i), (size_type) rowmap[i]);
for(int i = 0; i < nnz; i++)
{
EXPECT_EQ(checkEntries(i), entries[i]);
EXPECT_EQ(checkValues(i), values[i]);
}
}

template <typename scalar_t, typename lno_t, typename size_type, typename device>
void
testCrsMatrixHostMirror ()
Expand Down Expand Up @@ -226,6 +264,7 @@ testCrsMatrixHostMirror ()
#define EXECUTE_TEST(SCALAR, ORDINAL, OFFSET, DEVICE) \
TEST_F( TestCategory, sparse ## _ ## crsmatrix ## _ ## SCALAR ## _ ## ORDINAL ## _ ## OFFSET ## _ ## DEVICE ) { \
testCrsMatrix<SCALAR, ORDINAL, OFFSET, DEVICE> (); \
testCrsMatrixRawConstructor<SCALAR, ORDINAL, OFFSET, DEVICE> (); \
} \
TEST_F( TestCategory, sparse ## _ ## crsmatrix_host_mirror ## _ ## SCALAR ## _ ## ORDINAL ## _ ## OFFSET ## _ ## DEVICE ) { \
testCrsMatrixHostMirror<SCALAR, ORDINAL, OFFSET, DEVICE> (); \
Expand Down Expand Up @@ -329,4 +368,4 @@ TEST_F( TestCategory, sparse ## _ ## crsmatrix_host_mirror ## _ ## SCALAR ## _ #
EXECUTE_TEST(kokkos_complex_float, int64_t, size_t, TestExecSpace)
#endif


#undef EXECUTE_TEST