scikit-learn compatible tools to work with GBM models
pip install scikit-gbm
# or
pip install git+https://github.com/krzjoa/scikit-gbm.git
Fo the moment, you can find the following tools in the library:
GBMFeaturizer
GBMDiscretizer
trees_to_dataframe
AXIL
Take a look at the documentation to learn more.
A simple example, how to use GBMFeaturizer
in a classification task.
# Classification
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from skgbm.preprocessing import GBMFeaturizer
from xgboost import XGBClassifier
X, y = make_classification()
X_train, X_test, y_train, y_test = train_test_split(X, y)
pipeline = \
Pipeline([
('gbm_featurizer', GBMFeaturizer(XGBClassifier())),
('logistic_regression', LogisticRegression())
])
# Try also:
# ('gbm_featurizer', GBMFeaturizer(GradientBoostingClassifier())),
# ('gbm_featurizer', GBMFeaturizer(LGBMClassifier())),
# ('gbm_featurizer', GBMFeaturizer(CatBoostClassifier())),
# Predictions for the test set
pipeline_pred = pipeline.predict(X_test)