-
Notifications
You must be signed in to change notification settings - Fork 125
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Create 2022-07-21-KServe-0.9-release.md Signed-off-by: Dan Sun <dsun20@bloomberg.net> * Update mkdocs.yml Signed-off-by: Dan Sun <dsun20@bloomberg.net> * Update 2022-07-21-KServe-0.9-release.md Signed-off-by: Dan Sun <dsun20@bloomberg.net> * add inference graph image Signed-off-by: Dan Sun <dsun20@bloomberg.net> * update image path Signed-off-by: Dan Sun <dsun20@bloomberg.net> * update blog link Signed-off-by: Dan Sun <dsun20@bloomberg.net> * Add full release notes Signed-off-by: Dan Sun <dsun20@bloomberg.net>
- Loading branch information
Showing
2 changed files
with
153 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
# Announcing: KServe v0.9.0 | ||
|
||
Today, we are pleased to announce the v0.9.0 release of KServe! [KServe](https://github.com/kserve) has now fully onboarded to [LF AI & Data Foundation](https://lfaidata.foundation) as an [Incubation Project](https://lfaidata.foundation/projects/kserve)! | ||
|
||
In this release we are excited to introduce the new `InferenceGraph` feature which has long been asked from the community. Also continuing the effort from the last release for unifying the InferenceService API for deploying models on KServe and ModelMesh, ModelMesh is now fully compatible with KServe InferenceService API! | ||
|
||
|
||
## Introduce InferenceGraph | ||
|
||
The ML Inference system is getting bigger and more complex. It often consists of many models to make a single prediction. | ||
The common use cases are image classification and natural language multi-stage processing pipelines. For example, an image classification pipeline needs to run top level classification first then downstream further classification based on previous prediction results. | ||
|
||
KServe has the unique strength to build the distributed inference graph with its native integration of InferenceServices, standard inference protocol for chaining models and serverless auto-scaling capabilities. KServe leverages these strengths to build the InferenceGraph and enable users to deploy complex ML Inference pipelines to production in a declarative and scalable way. | ||
|
||
|
||
**InferenceGraph** is made up of a list of routing nodes with each node consisting of a set of routing steps. Each step can either route to an InferenceService or another node defined on the graph which makes the InferenceGraph highly composable. | ||
The graph router is deployed behind an HTTP endpoint and can be scaled dynamically based on request volume. The InferenceGraph supports four different types of routing nodes: **Sequence**, **Switch**, **Ensemble**, **Splitter**. | ||
|
||
![InferenceGraph](../../modelserving/inference_graph/images/inference_graph.png) | ||
|
||
- **Sequence Node**: It allows users to define multiple `Steps` with `InferenceServices` or `Nodes` as routing targets in a sequence. The `Steps` are executed in sequence and the request/response from the previous step and be passed to the next step as input based on configuration. | ||
- **Switch Node**: It allows users to define routing conditions and select a `Step` to execute if it matches the condition. The response is returned as soon as it finds the first step that matches the condition. If no condition is matched, the graph returns the original request. | ||
- **Ensemble Node**: A model ensemble requires scoring each model separately and then combines the results into a single prediction response. You can then use different combination methods to produce the final result. Multiple classification trees, for example, are commonly combined using a "majority vote" method. Multiple regression trees are often combined using various averaging techniques. | ||
- **Splitter Node**: It allows users to split the traffic to multiple targets using a weighted distribution. | ||
|
||
```yaml | ||
apiVersion: "serving.kserve.io/v1beta1" | ||
kind: "InferenceService" | ||
metadata: | ||
name: "cat-dog-classifier" | ||
spec: | ||
predictor: | ||
pytorch: | ||
resources: | ||
requests: | ||
cpu: 100m | ||
storageUri: gs://kfserving-examples/models/torchserve/cat_dog_classification | ||
--- | ||
apiVersion: "serving.kserve.io/v1beta1" | ||
kind: "InferenceService" | ||
metadata: | ||
name: "dog-breed-classifier" | ||
spec: | ||
predictor: | ||
pytorch: | ||
resources: | ||
requests: | ||
cpu: 100m | ||
storageUri: gs://kfserving-examples/models/torchserve/dog_breed_classification | ||
--- | ||
apiVersion: "serving.kserve.io/v1alpha1" | ||
kind: "InferenceGraph" | ||
metadata: | ||
name: "dog-breed-pipeline" | ||
spec: | ||
nodes: | ||
root: | ||
routerType: Sequence | ||
steps: | ||
- serviceName: cat-dog-classifier | ||
name: cat_dog_classifier # step name | ||
- serviceName: dog-breed-classifier | ||
name: dog_breed_classifier | ||
data: $request | ||
condition: "[@this].#(predictions.0==\"dog\")" | ||
``` | ||
Currently `InferenceGraph` is supported with the `Serverless` deployment mode. You can try it out following the [tutorial](https://kserve.github.io/website/master/modelserving/inference_graph/image_pipeline/). | ||
|
||
|
||
## InferenceService API for ModelMesh | ||
|
||
|
||
The InferenceService CRD is now the primary interface for interacting with ModelMesh. Some changes were made to the InferenceService spec to better facilitate ModelMesh’s needs. | ||
|
||
### Storage Spec | ||
|
||
To unify how model storage is defined for both single and multi-model serving, a new storage spec was added to the predictor model spec. With this storage spec, users can specify a key inside a common secret holding config/credentials for each of the storage backends from which models can be loaded. Example: | ||
|
||
```yaml | ||
storage: | ||
key: localMinIO # Credential key for the destination storage in the common secret | ||
path: sklearn # Model path inside the bucket | ||
# schemaPath: null # Optional schema files for payload schema | ||
parameters: # Parameters to override the default values inside the common secret. | ||
bucket: example-models | ||
``` | ||
Learn more [here](https://github.com/kserve/kserve/tree/release-0.9/docs/samples/storage/storageSpec). | ||
|
||
|
||
|
||
### Model Status | ||
|
||
For further alignment between ModelMesh and KServe, some additions to the InferenceService status were made. There is now a `Model Status` section which contains information about the model loaded in the predictor. New fields include: | ||
|
||
- `states` - State information of the predictor's model. | ||
- `activeModelState` - The state of the model currently being served by the predictor's endpoints. | ||
- `targetModelState` - This will be set only when `transitionStatus` is not `UpToDate`, meaning that the target model differs from the currently-active model. | ||
- `transitionStatus` - Indicates state of the predictor relative to its current spec. | ||
- `modelCopies` - Model copy information of the predictor's model. | ||
- `lastFailureInfo` - Details about the most recent error associated with this predictor. Not all of the contained fields will necessarily have a value. | ||
|
||
### Deploying on ModelMesh | ||
|
||
For deploying InferenceServices on ModelMesh, the ModelMesh and KServe controllers will still require that the user specifies the `serving.kserve.io/deploymentMode: ModelMesh` annotation. | ||
A complete example on an InferenceService with the new storage spec is showing below: | ||
|
||
```yaml | ||
apiVersion: serving.kserve.io/v1beta1 | ||
kind: InferenceService | ||
metadata: | ||
name: example-tensorflow-mnist | ||
annotations: | ||
serving.kserve.io/deploymentMode: ModelMesh | ||
spec: | ||
predictor: | ||
model: | ||
modelFormat: | ||
name: tensorflow | ||
storage: | ||
key: localMinIO | ||
path: tensorflow/mnist.savedmodel | ||
``` | ||
|
||
## Other New Features: | ||
|
||
- Support [serving MLFlow model format](https://kserve.github.io/website/0.9/modelserving/v1beta1/mlflow/v2/) via MLServer serving runtime. | ||
- Support [unified autoscaling target and metric fields](https://kserve.github.io/website/0.9/modelserving/autoscaling/autoscaling/) for InferenceService components with both Serverless and RawDeployment mode. | ||
- Support [InferenceService ingress class and url domain template configuration](https://kserve.github.io/website/0.9/admin/kubernetes_deployment/) for RawDeployment mode. | ||
- ModelMesh now has a default [OpenVINO Model Server](https://github.com/openvinotoolkit/model_server) ServingRuntime. | ||
|
||
|
||
## What’s Changed? | ||
|
||
- The KServe controller manager is changed from StatefulSet to Deployment to support HA mode. | ||
- log4j security vulnerability fix | ||
- Upgrade TorchServe serving runtime to 0.6.0 | ||
- Update MLServer serving runtime to 1.0.0 | ||
|
||
Check out the full release notes for [KServe](https://github.com/kserve/kserve/releases/tag/v0.9.0) and | ||
[ModelMesh](https://github.com/kserve/modelmesh-serving/releases/tag/v0.9.0) for more details. | ||
|
||
## Join the community | ||
|
||
- Visit our [Website](https://kserve.github.io/website/) or [GitHub](https://github.com/kserve) | ||
- Join the Slack ([#kserve](https://kubeflow.slack.com/join/shared_invite/zt-n73pfj05-l206djXlXk5qdQKs4o1Zkg#/)) | ||
- Attend our community meeting by subscribing to the [KServe calendar](https://wiki.lfaidata.foundation/display/kserve/calendars). | ||
- View our [community github repository](https://github.com/kserve/community) to learn how to make contributions. We are excited to work with you to make KServe better and promote its adoption! | ||
|
||
Thank you for contributing or checking out KServe! | ||
|
||
– The KServe Working Group |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters