chatgpt agent for wechat(ca4w),基于大模型(LLM)搭建的聊天机器人(Chatbot),支持RAG的记忆智能体(Memory Agent),用户随时随地随心随意地记录点滴。同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT4.0/ Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。
❤️️🌈喜欢的话,不妨“点石成金”点 Star ⭐️,“携手并进” Fork 一下🌳,你的点⭐️是我的动力,感谢🎉🌟!
- ✅ 多端部署: 有多种部署方式可选择且功能完备,目前已支持微信公众号、企业微信应用、飞书、钉钉等部署方式
- ✅ 基础对话: 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4o-mini, GPT-4o, GPT-4, Claude-3.5, Gemini, 文心一言, 讯飞星火, 通义千问,ChatGLM-4,Kimi(月之暗面), MiniMax
- ✅ 语音能力: 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型
- ✅ 图像能力: 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, CogView-3, vision模型
- ✅ 丰富插件: 支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件
- ✅ 知识库: 通过上传知识库文件自定义专属机器人,可作为数字分身、智能客服、私域助手使用,基于 LinkAI 实现
- 本项目遵循 MIT开源协议,仅用于技术研究和学习,使用本项目时需遵守所在地法律法规、相关政策以及企业章程,禁止用于任何违法或侵犯他人权益的行为
- 境内使用该项目时,请使用国内厂商的大模型服务,并进行必要的内容安全审核及过滤
- 本项目主要接入协同办公平台,推荐使用公众号、企微自建应用、钉钉、飞书等接入通道,其他通道为历史产物已不维护
- 任何个人、团队和企业,无论以何种方式使用该项目、对何对象提供服务,所产生的一切后果,本项目均不承担任何责任
DEMO视频:https://cdn.link-ai.tech/doc/cow_demo.mp4
扫码关注“趣聊机器人”微信公众号,体验该项目的效果:
快速开始详细文档:项目搭建文档
1. 依赖项目:esman
- elasticsearch manager,基于Elasticsearch的知识库管理和搜索的后端平台,支持向量搜索和ES搜索的融合,赋能智能问答、RAG、AI搜索。
- 该项目提供记忆智能体的信息内容存储和搜索功能,实现长期记忆。
- 从config.py了解可以配置的参数。
- 可先复制config-template.json为config.json,然后修改为自己的参数。
- 环境变量配置notebot的esman的参数,见脚本:notebot_chat_agent.py的os.environ。
- 可增加.env环境变量文件,也可以其他方式设置环境变量。
项目默认使用OpenAI接口,需前往 OpenAI注册页面 创建账号,创建完账号则前往 API管理页面 创建一个 API Key 并保存下来,后面需要在项目中配置这个key。接口需要海外网络访问及绑定信用卡支付。
默认对话模型是 openai 的 gpt-3.5-turbo,计费方式是约每 1000tokens (约750个英文单词 或 500汉字,包含请求和回复) 消耗 $0.002,图片生成是Dell E模型,每张消耗 $0.016。
项目同时也支持使用 LinkAI 接口,无需代理,可使用 Kimi、文心、讯飞、GPT-3.5、GPT-4o 等模型,支持 定制化知识库、联网搜索、MJ绘图、文档总结、工作流等能力。修改配置即可一键使用,参考 接入文档。
支持 Linux、MacOS、Windows 系统(可在Linux服务器上长期运行),同时需安装 Python
。
建议Python版本在 3.7.1~3.9.X 之间,推荐3.8版本,3.10及以上版本在 MacOS 可用,其他系统上不确定能否正常运行。
注意:Docker 或 Railway 部署无需安装python环境和下载源码,可直接快进到下一节。
(1) 克隆项目代码:
git clone https://github.com/kuangdd2024/wechatgpt-agent
cd wechatgpt-agent/
(2) 安装核心依赖 (必选):
能够使用
itchat
创建机器人,并具有文字交流功能所需的最小依赖集合。
pip3 install -r requirements.txt
(3) 拓展依赖 (可选,建议安装):
pip3 install -r requirements-optional.txt
如果某项依赖安装失败可注释掉对应的行再继续
配置文件的模板在根目录的config-template.json
中,需复制该模板创建最终生效的 config.json
文件:
cp config-template.json config.json
然后在config.json
中填入配置,以下是对默认配置的说明,可根据需要进行自定义修改(注意实际使用时请去掉注释,保证JSON格式的完整):
# config.json文件内容示例
{
"model": "gpt-3.5-turbo", # 模型名称, 支持 gpt-3.5-turbo, gpt-4, gpt-4-turbo, wenxin, xunfei, glm-4, claude-3-haiku, moonshot
"open_ai_api_key": "YOUR API KEY", # 如果使用openAI模型则填入上面创建的 OpenAI API KEY
"proxy": "", # 代理客户端的ip和端口,国内环境开启代理的需要填写该项,如 "127.0.0.1:7890"
"single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_name_white_list": ["ChatGPT测试群", "ChatGPT测试群2"], # 开启自动回复的群名称列表
"group_chat_in_one_session": ["ChatGPT测试群"], # 支持会话上下文共享的群名称
"image_create_prefix": ["画", "看", "找"], # 开启图片回复的前缀
"conversation_max_tokens": 1000, # 支持上下文记忆的最多字符数
"speech_recognition": false, # 是否开启语音识别
"group_speech_recognition": false, # 是否开启群组语音识别
"voice_reply_voice": false, # 是否使用语音回复语音
"character_desc": "你是基于大语言模型的AI智能助手,旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。", # 人格描述
# 订阅消息,公众号和企业微信channel中请填写,当被订阅时会自动回复,可使用特殊占位符。目前支持的占位符有{trigger_prefix},在程序中它会自动替换成bot的触发词。
"subscribe_msg": "感谢您的关注!\n这里是ChatGPT,可以自由对话。\n支持语音对话。\n支持图片输出,画字开头的消息将按要求创作图片。\n支持角色扮演和文字冒险等丰富插件。\n输入{trigger_prefix}#help 查看详细指令。",
"use_linkai": false, # 是否使用LinkAI接口,默认关闭,开启后可国内访问,使用知识库和MJ
"linkai_api_key": "", # LinkAI Api Key
"linkai_app_code": "" # LinkAI 应用或工作流code
}
配置说明:
1.个人聊天
- 个人聊天中,需要以 "bot"或"@bot" 为开头的内容触发机器人,对应配置项
single_chat_prefix
( 如果不需要以前缀触发可以填写"single_chat_prefix": [""]
) - 机器人回复的内容会以 "[bot] " 作为前缀, 以区分真人,对应的配置项为
single_chat_reply_prefix
( 如果不需要前缀可以填写"single_chat_reply_prefix": ""
)
2.群组聊天
- 群组聊天中,群名称需配置在
group_name_white_list
中才能开启群聊自动回复。如果想对所有群聊生效,可以直接填写"group_name_white_list": ["ALL_GROUP"]
- 默认只要被人 @ 就会触发机器人自动回复;另外群聊天中只要检测到以 "@bot"
开头的内容,同样会自动回复(方便自己触发),这对应配置项
group_chat_prefix
- 可选配置:
group_name_keyword_white_list
配置项支持模糊匹配群名称,group_chat_keyword
配置项则支持模糊匹配群消息内容,用法与上述两个配置项相同。(Contributed by evolay) group_chat_in_one_session
:使群聊共享一个会话上下文,配置["ALL_GROUP"]
则作用于所有群聊
3.语音识别
- 添加
"speech_recognition": true
将开启语音识别,默认使用openai的whisper模型识别为文字,同时以文字回复,该参数仅支持私聊 ( 注意由于语音消息无法匹配前缀,一旦开启将对所有语音自动回复,支持语音触发画图); - 添加
"group_speech_recognition": true
将开启群组语音识别,默认使用openai的whisper模型识别为文字,同时以文字回复,参数仅支持群聊 ( 会匹配group_chat_prefix和group_chat_keyword, 支持语音触发画图); - 添加
"voice_reply_voice": true
将开启语音回复语音(同时作用于私聊和群聊)
4.其他配置
model
: 模型名称,目前支持gpt-3.5-turbo
,gpt-4o-mini
,gpt-4o
,gpt-4
,wenxin
,claude
,gemini
,glm-4
,xunfei
,moonshot
等,全部模型名称参考common/const.py文件temperature
,frequency_penalty
,presence_penalty
: Chat API接口参数,详情参考OpenAI官方文档。proxy
:由于目前openai
接口国内无法访问,需配置代理客户端的地址,详情参考 #351- 对于图像生成,在满足个人或群组触发条件外,还需要额外的关键词前缀来触发,对应配置
image_create_prefix
关于OpenAI对话及图片接口的参数配置(内容自由度、回复字数限制、图片大小等),可以参考 对话接口
和 图像接口
文档,在config.py
中检查哪些参数在本项目中是可配置的。
conversation_max_tokens
:表示能够记忆的上下文最大字数(一问一答为一组对话,如果累积的对话字数超出限制,就会优先移除最早的一组对话)rate_limit_chatgpt
,rate_limit_dalle
:每分钟最高问答速率、画图速率,超速后排队按序处理。clear_memory_commands
: 对话内指令,主动清空前文记忆,字符串数组可自定义指令别名。hot_reload
: 程序退出后,暂存等于状态,默认关闭。character_desc
配置中保存着你对机器人说的一段话,他会记住这段话并作为他的设定,你可以为他定制任何人格 ( 关于会话上下文的更多内容参考该 issue)subscribe_msg
:订阅消息,公众号和企业微信channel中请填写,当被订阅时会自动回复, 可使用特殊占位符。目前支持的占位符有{trigger_prefix},在程序中它会自动替换成bot的触发词。
5.LinkAI配置 (可选)
use_linkai
: 是否使用LinkAI接口,开启后可国内访问,使用知识库和Midjourney
绘画, 参考 文档linkai_api_key
: LinkAI Api Key,可在 控制台 创建linkai_app_code
: LinkAI 应用或工作流的code,选填
本说明文档可能会未及时更新,当前所有可选的配置项均在该config.py
中列出。*
如果是开发机 本地运行,直接在项目根目录下执行:
python3 app.py # windows环境下该命令通常为 python app.py
终端输出二维码后,进行扫码登录,当输出 "Start auto replying" 时表示自动回复程序已经成功运行了(注意:用于登录的账号需要在支付处已完成实名认证)。扫码登录后你的账号就成为机器人了,可以在手机端通过配置的关键词触发自动回复 ( 任意好友发送消息给你,或是自己发消息给好友),参考#142。
使用nohup命令在后台运行程序:
nohup python3 app.py & tail -f nohup.out # 在后台运行程序并通过日志输出二维码
扫码登录后程序即可运行于服务器后台,此时可通过 ctrl+c
关闭日志,不会影响后台程序的运行。使用 ps -ef | grep app.py | grep -v grep
命令可查看运行于后台的进程,如果想要重新启动程序可以先 kill
掉对应的进程。日志关闭后如果想要再次打开只需输入tail -f nohup.out
。此外,scripts
目录下有一键运行、关闭程序的脚本供使用。
多账号支持: 将项目复制多份,分别启动程序,用不同账号扫码登录即可实现同时运行。
特殊指令: 用户向机器人发送 #reset 即可清空该用户的上下文记忆。
使用docker部署无需下载源码和安装依赖,只需要获取 docker-compose.yml 配置文件并启动容器即可。
前提是需要安装好
docker
及docker-compose
,安装成功的表现是执行docker -v
和docker-compose version
(或 docker compose version) 可以查看到版本号,可前往 docker官网 进行下载。
(1) 下载 docker-compose.yml 文件
wget https://open-1317903499.cos.ap-guangzhou.myqcloud.com/docker-compose.yml
下载完成后打开 docker-compose.yml
修改所需配置,如 OPEN_AI_API_KEY
和 GROUP_NAME_WHITE_LIST
等。
(2) 启动容器
在 docker-compose.yml
所在目录下执行以下命令启动容器:
sudo docker compose up -d
运行 sudo docker ps
能查看到 NAMES 为 chatgpt-on-wechat 的容器即表示运行成功。
注意:
- 如果
docker-compose
是 1.X 版本 则需要执行sudo docker-compose up -d
来启动容器 - 该命令会自动去 docker hub 拉取 latest 版本的镜像,latest 镜像会在每次项目 release 新的版本时生成
最后运行以下命令可查看容器运行日志,扫描日志中的二维码即可完成登录:
sudo docker logs -f chatgpt-on-wechat
(3) 插件使用
如果需要在docker容器中修改插件配置,可通过挂载的方式完成,将 插件配置文件
重命名为 config.json
,放置于 docker-compose.yml
相同目录下,并在 docker-compose.yml
中的 chatgpt-on-wechat
部分下添加 volumes
映射:
volumes:
- ./config.json:/app/plugins/config.json
Railway 每月提供5刀和最多500小时的免费额度。 (07.11更新: 目前大部分账号已无法免费部署)
- 进入 Railway
- 点击
Deploy Now
按钮。 - 设置环境变量来重载程序运行的参数,例如
open_ai_api_key
,character_desc
。
一键部署:
FAQs: https://github.com/zhayujie/chatgpt-on-wechat/wiki/FAQs
欢迎接入更多应用,参考 Terminal代码 实现接收和发送消息逻辑即可接入。 同时欢迎增加新的插件,参考 插件说明文档。
欢迎提交PR、Issues,以及Star支持一下。程序运行遇到问题可以前往 Issues 中搜索。个人开发者可加入开源交流群参与更多讨论。