-
Notifications
You must be signed in to change notification settings - Fork 448
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add Optuna based suggestion service #1613
Changes from all commits
85863d7
2890121
425c4d5
8485f3b
9f651d8
6486bf3
5dd65c8
a4ae6e2
a119fb2
1c0e15f
b2085a6
1d81885
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
FROM python:3.9 | ||
|
||
ENV TARGET_DIR /opt/katib | ||
ENV SUGGESTION_DIR cmd/suggestion/optuna/v1beta1 | ||
|
||
RUN if [ "$(uname -m)" = "ppc64le" ] || [ "$(uname -m)" = "aarch64" ]; then \ | ||
apt-get -y update && \ | ||
apt-get -y install gfortran libopenblas-dev liblapack-dev; \ | ||
fi | ||
|
||
RUN GRPC_HEALTH_PROBE_VERSION=v0.3.1 && \ | ||
if [ "$(uname -m)" = "ppc64le" ]; then \ | ||
wget -qO/bin/grpc_health_probe https://github.com/grpc-ecosystem/grpc-health-probe/releases/download/${GRPC_HEALTH_PROBE_VERSION}/grpc_health_probe-linux-ppc64le; \ | ||
elif [ "$(uname -m)" = "aarch64" ]; then \ | ||
wget -qO/bin/grpc_health_probe https://github.com/grpc-ecosystem/grpc-health-probe/releases/download/${GRPC_HEALTH_PROBE_VERSION}/grpc_health_probe-linux-arm64; \ | ||
else \ | ||
wget -qO/bin/grpc_health_probe https://github.com/grpc-ecosystem/grpc-health-probe/releases/download/${GRPC_HEALTH_PROBE_VERSION}/grpc_health_probe-linux-amd64; \ | ||
fi && \ | ||
chmod +x /bin/grpc_health_probe | ||
|
||
ADD ./pkg/ ${TARGET_DIR}/pkg/ | ||
ADD ./${SUGGESTION_DIR}/ ${TARGET_DIR}/${SUGGESTION_DIR}/ | ||
WORKDIR ${TARGET_DIR}/${SUGGESTION_DIR} | ||
RUN pip install --no-cache-dir -r requirements.txt | ||
|
||
RUN chgrp -R 0 ${TARGET_DIR} \ | ||
&& chmod -R g+rwX ${TARGET_DIR} | ||
|
||
ENV PYTHONPATH ${TARGET_DIR}:${TARGET_DIR}/pkg/apis/manager/v1beta1/python:${TARGET_DIR}/pkg/apis/manager/health/python | ||
|
||
ENTRYPOINT ["python", "main.py"] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
# Copyright 2021 The Kubeflow Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import grpc | ||
import time | ||
from pkg.apis.manager.v1beta1.python import api_pb2_grpc | ||
from pkg.apis.manager.health.python import health_pb2_grpc | ||
from pkg.suggestion.v1beta1.optuna.service import OptunaService | ||
from concurrent import futures | ||
|
||
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 | ||
DEFAULT_PORT = "0.0.0.0:6789" | ||
|
||
|
||
def serve(): | ||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) | ||
service = OptunaService() | ||
api_pb2_grpc.add_SuggestionServicer_to_server(service, server) | ||
health_pb2_grpc.add_HealthServicer_to_server(service, server) | ||
server.add_insecure_port(DEFAULT_PORT) | ||
print("Listening...") | ||
server.start() | ||
try: | ||
while True: | ||
time.sleep(_ONE_DAY_IN_SECONDS) | ||
except KeyboardInterrupt: | ||
server.stop(0) | ||
|
||
|
||
if __name__ == "__main__": | ||
serve() |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
grpcio==1.39.0 | ||
protobuf==3.17.3 | ||
googleapis-common-protos==1.53.0 | ||
optuna>=2.8.0 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
apiVersion: "kubeflow.org/v1beta1" | ||
kind: Experiment | ||
metadata: | ||
namespace: kubeflow | ||
name: multivariate-tpe-example | ||
spec: | ||
objective: | ||
type: maximize | ||
goal: 0.99 | ||
objectiveMetricName: Validation-accuracy | ||
additionalMetricNames: | ||
- Train-accuracy | ||
algorithm: | ||
algorithmName: multivariate-tpe | ||
parallelTrialCount: 3 | ||
maxTrialCount: 12 | ||
maxFailedTrialCount: 3 | ||
parameters: | ||
- name: lr | ||
parameterType: double | ||
feasibleSpace: | ||
min: "0.01" | ||
max: "0.03" | ||
- name: num-layers | ||
parameterType: int | ||
feasibleSpace: | ||
min: "2" | ||
max: "5" | ||
- name: optimizer | ||
parameterType: categorical | ||
feasibleSpace: | ||
list: | ||
- sgd | ||
- adam | ||
- ftrl | ||
trialTemplate: | ||
primaryContainerName: training-container | ||
trialParameters: | ||
- name: learningRate | ||
description: Learning rate for the training model | ||
reference: lr | ||
- name: numberLayers | ||
description: Number of training model layers | ||
reference: num-layers | ||
- name: optimizer | ||
description: Training model optimizer (sdg, adam or ftrl) | ||
reference: optimizer | ||
trialSpec: | ||
apiVersion: batch/v1 | ||
kind: Job | ||
spec: | ||
template: | ||
spec: | ||
containers: | ||
- name: training-container | ||
image: docker.io/kubeflowkatib/mxnet-mnist:v1beta1-45c5727 | ||
command: | ||
- "python3" | ||
- "/opt/mxnet-mnist/mnist.py" | ||
- "--batch-size=64" | ||
- "--lr=${trialParameters.learningRate}" | ||
- "--num-layers=${trialParameters.numberLayers}" | ||
- "--optimizer=${trialParameters.optimizer}" | ||
restartPolicy: Never | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# Copyright 2021 The Kubeflow Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from collections import defaultdict | ||
import threading | ||
|
||
import optuna | ||
|
||
from pkg.apis.manager.v1beta1.python import api_pb2 | ||
from pkg.apis.manager.v1beta1.python import api_pb2_grpc | ||
from pkg.suggestion.v1beta1.internal.constant import INTEGER, DOUBLE, CATEGORICAL, DISCRETE, MAX_GOAL | ||
from pkg.suggestion.v1beta1.internal.search_space import HyperParameterSearchSpace | ||
from pkg.suggestion.v1beta1.internal.trial import Trial, Assignment | ||
from pkg.suggestion.v1beta1.internal.base_health_service import HealthServicer | ||
|
||
|
||
class OptunaService(api_pb2_grpc.SuggestionServicer, HealthServicer): | ||
|
||
def __init__(self): | ||
super(OptunaService, self).__init__() | ||
self.study = None | ||
self.search_space = None | ||
self.recorded_trial_names = set() | ||
self.assignments_to_optuna_number = defaultdict(list) | ||
self.lock = threading.Lock() | ||
|
||
def GetSuggestions(self, request, context): | ||
""" | ||
Main function to provide suggestion. | ||
""" | ||
with self.lock: | ||
if self.study is None: | ||
self.search_space = HyperParameterSearchSpace.convert(request.experiment) | ||
self.study = self._create_study(request.experiment.spec.algorithm, self.search_space) | ||
|
||
trials = Trial.convert(request.trials) | ||
|
||
if len(trials) != 0: | ||
self._tell(trials) | ||
list_of_assignments = self._ask(request.request_number) | ||
|
||
return api_pb2.GetSuggestionsReply( | ||
parameter_assignments=Assignment.generate(list_of_assignments) | ||
) | ||
|
||
def _create_study(self, algorithm_spec, search_space): | ||
sampler = self._create_sampler(algorithm_spec) | ||
direction = "maximize" if search_space.goal == MAX_GOAL else "minimize" | ||
|
||
study = optuna.create_study(sampler=sampler, direction=direction) | ||
|
||
return study | ||
|
||
def _create_sampler(self, algorithm_spec): | ||
name = algorithm_spec.algorithm_name | ||
settings = {s.name:s.value for s in algorithm_spec.algorithm_settings} | ||
|
||
if name == "tpe" or name == "multivariate-tpe": | ||
kwargs = {} | ||
for k, v in settings.items(): | ||
if k == "startup_trials": | ||
kwargs["n_startup_trials"] = int(v) | ||
elif k == "ei_candidates": | ||
kwargs["n_ei_candidates"] = int(v) | ||
elif k == "random_state": | ||
kwargs["seed"] = int(v) | ||
else: | ||
raise ValueError("Unknown name for {}: {}".format(name, k)) | ||
|
||
kwargs["multivariate"] = name == "multivariate-tpe" | ||
kwargs["constant_liar"] = True | ||
|
||
sampler = optuna.samplers.TPESampler(**kwargs) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @g-votte I think it's reasonable to set There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Or we can provide an algorithm setting to set There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good catch. There is less reason to disable constant liar especially with parallel optimization. |
||
|
||
elif name == "cmaes": | ||
kwargs = {} | ||
for k, v in settings.items(): | ||
if k == "restart_strategy": | ||
kwargs["restart_strategy"] = v | ||
elif k == "sigma": | ||
kwargs["sigma0"] = float(v) | ||
elif k == "random_state": | ||
kwargs["seed"] = int(v) | ||
else: | ||
raise ValueError("Unknown name for {}: {}".format(name, k)) | ||
|
||
sampler = optuna.samplers.CmaEsSampler(**kwargs) | ||
|
||
elif name == "random": | ||
kwargs = {} | ||
for k, v in settings.items(): | ||
if k == "random_state": | ||
kwargs["seed"] = int(v) | ||
else: | ||
raise ValueError("Unknown name for {}: {}".format(name, k)) | ||
|
||
sampler = optuna.samplers.RandomSampler(**kwargs) | ||
|
||
else: | ||
raise ValueError("Unknown algorithm name: {}".format(name)) | ||
|
||
return sampler | ||
|
||
def _ask(self, request_number): | ||
list_of_assignments = [] | ||
for _ in range(request_number): | ||
optuna_trial = self.study.ask(fixed_distributions=self._get_optuna_search_space()) | ||
|
||
assignments = [Assignment(k,v) for k,v in optuna_trial.params.items()] | ||
list_of_assignments.append(assignments) | ||
|
||
assignments_key = self._get_assignments_key(assignments) | ||
self.assignments_to_optuna_number[assignments_key].append(optuna_trial.number) | ||
|
||
return list_of_assignments | ||
|
||
def _tell(self, trials): | ||
for trial in trials: | ||
if trial.name not in self.recorded_trial_names: | ||
self.recorded_trial_names.add(trial.name) | ||
|
||
value = float(trial.target_metric.value) | ||
assignments_key = self._get_assignments_key(trial.assignments) | ||
optuna_trial_numbers = self.assignments_to_optuna_number[assignments_key] | ||
|
||
if len(optuna_trial_numbers) != 0: | ||
trial_number = optuna_trial_numbers.pop(0) | ||
self.study.tell(trial_number, value) | ||
else: | ||
raise ValueError("An unknown trial has been passed in the GetSuggestion request.") | ||
|
||
def _get_assignments_key(self, assignments): | ||
assignments = sorted(assignments, key=lambda a: a.name) | ||
assignments_str = [f"{a.name}:{a.value}" for a in assignments] | ||
return ",".join(assignments_str) | ||
|
||
def _get_optuna_search_space(self): | ||
search_space = {} | ||
for param in self.search_space.params: | ||
if param.type == INTEGER: | ||
search_space[param.name] = optuna.distributions.IntUniformDistribution(int(param.min), int(param.max)) | ||
elif param.type == DOUBLE: | ||
search_space[param.name] = optuna.distributions.UniformDistribution(float(param.min), float(param.max)) | ||
elif param.type == CATEGORICAL or param.type == DISCRETE: | ||
search_space[param.name] = optuna.distributions.CategoricalDistribution(param.list) | ||
return search_space | ||
|
||
def _get_casted_assignment_value(self, assignment): | ||
for param in self.search_space.params: | ||
if param.name == assignment.name: | ||
if param.type == INTEGER: | ||
return int(assignment.value) | ||
elif param.type == DOUBLE: | ||
return float(assignment.value) | ||
elif param.type == CATEGORICAL or param.type == DISCRETE: | ||
return assignment.value | ||
else: | ||
raise ValueError("Unknown parameter type: {}".format(param.type)) | ||
raise ValueError("Parameter not found in the search space: {}".format(param.name)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You need to update the following files to use
multivariate-tpe
on New Katib UI.But it might be enough to work on this in a separated pull request.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for your information. Since changing those components is user-facing, I'd like to work on that in a separated PR.