Skip to content

laura-dietz/minir-plots

Repository files navigation

minir-plots

Mini Plotting scripts for IR experiments.

Works with query-by-query output of trec-eval and galago-eval evaluation code which produce run files in the tab-separated form queryId, metric, value. We refer to this evaluation output for a run file as "run" in the following.

Example:

queryId metric value
C09-1	ndcg	0.27478
C09-1	ndcg5	0.47244
C09-1	ndcg10	0.32972
C09-1	ndcg20	0.25703
C09-1	ERR	0.18652
C09-1	ERR10	0.16907
C09-1	ERR20	0.17581
C09-1	P1	1.00000
C09-2	ndcg	0.25
C09-2	ndcg5	0.37244
C09-2	ndcg10	0.22972
C09-2	ndcg20	0.26703
C09-2	ERR	0.19652
C09-2	ERR10	0.17907
C09-2	ERR20	0.18581
C09-2	P1	0.0

These scripts require Python 3, numpy, scipy, matplotlib and pandas.

Install

Option A) setup.py:

  1. python setup.py install.
  2. Call scripts python column.py ...

Option B) Nix:

  1. Install NIX from https://nixos.org/nix/
  2. cd into minir-plots; run nix build
  3. Call scripts with nix run -f $minirPlotsDirectory -c $minirScript ...

where $minirPlots is the directory into which you checked out this repository and $minirScript is one of the plotting options listed below.

For other scripts (other than column.py/minir-column) see documentation below.

Creating column plots with std error bars

Classic bar chart indicating the mean of values for the given metric across all queries with error bars indicating the standard error. Will include results of a paired-t-test with respect to the best performing method - methods for which no significance of difference is detected are marked with a red arrow.

usage: nix run -f $minirPlotsDirectory -c minir-column  [-h] --out FILE --metric METRIC runs [runs ...]

or: python column.py [-h] --out FILE --metric METRIC [-c] [-s] runs [runs ...]

positional arguments:
  runs

optional arguments:
  -h, --help       show this help message and exit
  --out OUT        outputfilename
  --metric METRIC  metric for comparison
  -c               also include omitted queries with score 0 (requires "num_q" entry)
  --sort           sorts runs by performance
  --format FORMAT  format of eval output, trec_eval or galago_eval
  

Creating column plots grouped in columns by difficulty

Unconventional bar chart showing the mean performance for queries of different difficulties. Difficulty is defined by the performance of the first run (baseline). The chart contains a group for the 5% most difficult queries to the left, 5% easiest queries (to the right) as well as quartiles and intermediate ranges.

usage: nix run -f $minirPlotsDirectory -c minir-column-difficulty  [-h]  --out FILE --metric METRIC
                                   [--diffmetric DIFFMETRIC]
                                   baselinerun [runs ...]

or: python column_difficulty.py [-h] ... (as above)

positional arguments:
  baselinerun           run file to define difficulty of queries
  runs                  other run file for comparison

optional arguments:
  -h, --help            show this help message and exit
  --out OUT             outputfilename
  --metric METRIC       metric for comparison
  --diffmetric DIFFMETRIC
                        metric for difficulty
  --format FORMAT  format of eval output, trec_eval or galago_eval

If the diffmetric is given, the queries will be divided into difficulty according to how the baseline run performs on the diffmetric, the columns will indicate the performance under the given metric.

Hurts-helps analysis

Using the first run as the baseline, computes the numbers of queries on which each run improved performance ("helps") or lowered the performance ("hurt"). Also lists the queries that were helped or hurts separated by spaces.

usage: nix run -f $minirPlotsDirectory -c minir-hurtshelps [-h] --metric METRIC [--delta DELTA] runs [runs ...]
or: python hurtshelps.py [-h] --metric METRIC [--delta DELTA] runs [runs ...]

positional arguments:
  runs

optional arguments:
  -h, --help       show this help message and exit
  --metric METRIC  metric for comparison
  --delta DELTA    Minimum difference to be considered
  --format FORMAT  format of eval output, trec_eval or galago_eval

If delta is given, only queries that differed by at least this amout are considered in the analysis.

Paired T-test

Compute paired T-test for any run against the baseline (first run). Prints t-statistics and p-value for two-sided test.

usage: nix run -f $minirPlotsDirectory -c minir-pairttest [-h] --metric METRIC runs [runs ...]
or: python paired-ttest.py [-h] --metric METRIC baselinerun [runs ...]

positional arguments:
  baselinerun      run file to define difficulty of queries
  runs             other runs to compare

optional arguments:
  -h, --help       show this help message and exit
  --metric METRIC  metric for comparison
  --format FORMAT  format of eval output, trec_eval or galago_eval

About

Mini Plotting scripts for IR experiments

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •