Skip to content

MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation

License

Notifications You must be signed in to change notification settings

lawrence-cj/MetaBEV

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Updates

  • (20/04/2023) MetaBEV is released on arxiv.

Abstract

Perception systems in modern autonomous driving vehicles typically take inputs from complementary multi-modal sensors, e.g., LiDAR and cameras. However, in real-world applications, sensor corruptions and failures lead to inferior performances, thus compromising autonomous safety.

In this paper, we propose a robust framework, called MetaBEV, to address extreme real-world environments, involving overall six sensor corruptions and two extreme sensor-missing situations.

Experiments show MetaBEV outperforms prior arts by a large margin on both full and corrupted modalities. For instance, when the LiDAR signal is missing, MetaBEV improves 35.5% detection NDS and 17.7% segmentation mIoU upon the vanilla BEVFusion model; and when the camera signal is absent, MetaBEV still achieves 69.2% NDS and 53.7% mIoU, which is even higher than previous works that perform on full-modalities. Moreover, MetaBEV performs fairly against previous methods in both canonical perception and multi-task learning settings, refreshing state-of-the-art nuScenes BEV map segmentation with 70.4% mIoU.

Results

Our model achieves the following performance on :

1-Single Complementary Modalities.

  • Detection on nuScenes val set with LiDAR and Camera.
Methods Modality Multi-Task mAP(val) NDS(val)
MetaBEV-Transfusion Camera x 49.4 49.7
MetaBEV-Centerhead Camera x 55.5 60.4
MetaBEV-Transfusion LiDAR x 62.5 68.6
MetaBEV-Centerhead LiDAR x 64.2 69.3
MetaBEV-Transfusion Camera+LiDAR x 68 71.5
MetaBEV-Transfusion Camera+LiDAR 65.4 69.8
  • Segmentation on nuScenes val set with LiDAR and Camera.
Methods Modality Drivable Ped.Cross Walkway Stop Line Carpark Divider Mean
MetaBEV Camera 83.3 56.7 61.4 50.8 55.5 48 59.3
MetaBEV LiDAR 87.9 63.4 71.6 55 55.1 55.7 64.8
MetaBEV Camera+LiDAR 89.6 68.4 74.8 63.3 64.4 61.8 70.4
MetaBEV Camera+LiDAR 88.5 64.9 71.8 56.7 61.1 58.2 66.9

2-Missing Modalities.

Methods Camera+LiDAR Missing Camera Missing LiDAR
mAP NDS mIoU mAP NDS mIoU mAP NDS mIoU
MetaBEV 68.0 71.5 70.4 63.6 69.2 53.7 39.0 42.6 54.4

3-Corrupted Modalities.

Acknowledgements

The project is based on mmdetection3d, BEVFusion, robust benchmark. Thanks for their awesome works.

License

This project is under the MIT license. See LICENSE for details.

Citation

If you find MetaBEV useful or relevant in your research please consider citing our paper:

@article{ge2023metabev,
  title={MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation},
  author={Ge, Chongjian and Chen, Junsong and Xie, Enze and Wang, Zhongdao and Hong, Lanqing and Lu, Huchuan and Li, Zhenguo and Luo, Ping},
  journal={arXiv preprint arXiv:2304.09801},
  year={2023}
}

About

MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published