Skip to content

Commit

Permalink
feat(Module/ZLattice): define the pullback of a ZLattice (#16822)
Browse files Browse the repository at this point in the history
Define the pullback of a ZLattice `L` by a linear map `f`. The following results are also included:

- If `f` is a continuous linear equiv, then the pullback is also a ZLattice (added as an instance).
- If `f` is a linear equiv, define the corresponding basis of the pullback obtained from a basis of `L` 
- If `f` is a continuous linear equiv and volume preserving, prove that `L` and its pullback have the same volume. 

This PR is part of the proof of the Analytic Class Number Formula.



Co-authored-by: Xavier Roblot <46200072+xroblot@users.noreply.github.com>
  • Loading branch information
xroblot and xroblot committed Oct 21, 2024
1 parent d43bc00 commit 3bf558f
Show file tree
Hide file tree
Showing 2 changed files with 108 additions and 9 deletions.
89 changes: 88 additions & 1 deletion Mathlib/Algebra/Module/ZLattice/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,17 @@ A `ℤ`-lattice `L` can be defined in two ways:
Results about the first point of view are in the `ZSpan` namespace and results about the second
point of view are in the `ZLattice` namespace.
## Main results
## Main results and definitions
* `ZSpan.isAddFundamentalDomain`: for a ℤ-lattice `Submodule.span ℤ (Set.range b)`, proves that
the set defined by `ZSpan.fundamentalDomain` is a fundamental domain.
* `ZLattice.module_free`: a `ℤ`-submodule of `E` that is discrete and spans `E` over `K` is a free
`ℤ`-module
* `ZLattice.rank`: a `ℤ`-submodule of `E` that is discrete and spans `E` over `K` is free
of `ℤ`-rank equal to the `K`-rank of `E`
* `ZLattice.comap`: for `e : E → F` a linear map and `L : Submodule ℤ E`, define the pullback of
`L` by `e`. If `L` is a `IsZLattice` and `e` is a continuous linear equiv, then it is also a
`IsZLattice`, see `instIsZLatticeComap`.
## Implementation Notes
Expand All @@ -58,6 +61,11 @@ variable (b : Basis ι K E)

theorem span_top : span K (span ℤ (Set.range b) : Set E) = ⊤ := by simp [span_span_of_tower]


theorem map {F : Type*} [NormedAddCommGroup F] [NormedSpace K F] (f : E ≃ₗ[K] F) :
Submodule.map (f.restrictScalars ℤ) (span ℤ (Set.range b)) = span ℤ (Set.range (b.map f)) := by
simp_rw [Submodule.map_span, LinearEquiv.restrictScalars_apply, Basis.coe_map, Set.range_comp]

/-- The fundamental domain of the ℤ-lattice spanned by `b`. See `ZSpan.isAddFundamentalDomain`
for the proof that it is a fundamental domain. -/
def fundamentalDomain : Set E := {m | ∀ i, b.repr m i ∈ Set.Ico (0 : K) 1}
Expand Down Expand Up @@ -399,6 +407,8 @@ theorem _root_.ZSpan.isZLattice {E ι : Type*} [NormedAddCommGroup E] [NormedSpa
IsZLattice ℝ (span ℤ (Set.range b)) where
span_top := ZSpan.span_top b

section NormedLinearOrderedField

variable (K : Type*) [NormedLinearOrderedField K] [HasSolidNorm K] [FloorRing K]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace K E] [FiniteDimensional K E]
variable [ProperSpace E] (L : Submodule ℤ E) [DiscreteTopology L]
Expand Down Expand Up @@ -607,4 +617,81 @@ instance instCountable_of_discrete_submodule {E : Type*} [NormedAddCommGroup E]
simp_rw [← (Module.Free.chooseBasis ℤ L).ofZLatticeBasis_span ℝ]
infer_instance

end NormedLinearOrderedField

section comap

variable (K : Type*) [NormedField K] {E F : Type*} [NormedAddCommGroup E] [NormedSpace K E]
[NormedAddCommGroup F] [NormedSpace K F] (L : Submodule ℤ E)

/-- Let `e : E → F` a linear map, the map that sends a `L : Submodule ℤ E` to the
`Submodule ℤ F` that is the pullback of `L` by `e`. If `IsZLattice L` and `e` is a continuous
linear equiv, then it is a `IsZLattice` of `E`, see `instIsZLatticeComap`. -/
protected def ZLattice.comap (e : F →ₗ[K] E) := L.comap (e.restrictScalars ℤ)

@[simp]
theorem ZLattice.coe_comap (e : F →ₗ[K] E) :
(ZLattice.comap K L e : Set F) = e⁻¹' L := rfl

theorem ZLattice.comap_refl :
ZLattice.comap K L (1 : E →ₗ[K] E)= L := Submodule.comap_id L

theorem ZLattice.comap_discreteTopology [hL : DiscreteTopology L] {e : F →ₗ[K] E}
(he₁ : Continuous e) (he₂ : Function.Injective e) :
DiscreteTopology (ZLattice.comap K L e) := by
exact DiscreteTopology.preimage_of_continuous_injective L he₁ he₂

instance [DiscreteTopology L] (e : F ≃L[K] E) :
DiscreteTopology (ZLattice.comap K L e.toLinearMap) :=
ZLattice.comap_discreteTopology K L e.continuous e.injective

theorem ZLattice.comap_span_top (hL : span K (L : Set E) = ⊤) {e : F →ₗ[K] E}
(he : (L : Set E) ⊆ LinearMap.range e) :
span K (ZLattice.comap K L e : Set F) = ⊤ := by
rw [ZLattice.coe_comap, Submodule.span_preimage_eq (Submodule.nonempty L) he, hL, comap_top]

instance instIsZLatticeComap [DiscreteTopology L] [IsZLattice K L] (e : F ≃L[K] E) :
IsZLattice K (ZLattice.comap K L e.toLinearMap) where
span_top := by
rw [ZLattice.coe_comap, LinearEquiv.coe_coe, e.coe_toLinearEquiv, ← e.image_symm_eq_preimage,
← Submodule.map_span, IsZLattice.span_top, Submodule.map_top, LinearEquivClass.range]

theorem ZLattice.comap_comp {G : Type*} [NormedAddCommGroup G] [NormedSpace K G]
(e : F →ₗ[K] E) (e' : G →ₗ[K] F) :
(ZLattice.comap K (ZLattice.comap K L e) e') = ZLattice.comap K L (e ∘ₗ e') :=
(Submodule.comap_comp _ _ L).symm

/-- If `e` is a linear equivalence, it induces a `ℤ`-linear equivalence between
`L` and `ZLattice.comap K L e`. -/
def ZLattice.comap_equiv (e : F ≃ₗ[K] E) :
L ≃ₗ[ℤ] (ZLattice.comap K L e.toLinearMap) :=
LinearEquiv.ofBijective
((e.symm.toLinearMap.restrictScalars ℤ).restrict
(fun _ h ↦ by simpa [← SetLike.mem_coe] using h))
fun _ _ h ↦ Subtype.ext_iff_val.mpr (e.symm.injective (congr_arg Subtype.val h)),
fun ⟨x, hx⟩ ↦ ⟨⟨e x, by rwa [← SetLike.mem_coe, ZLattice.coe_comap] at hx⟩,
by simp [Subtype.ext_iff_val]⟩⟩

@[simp]
theorem ZLattice.comap_equiv_apply (e : F ≃ₗ[K] E) (x : L) :
ZLattice.comap_equiv K L e x = e.symm x := rfl

/-- The basis of `ZLattice.comap K L e` given by the image of a basis `b` of `L` by `e.symm`. -/
def Basis.ofZLatticeComap (e : F ≃ₗ[K] E) {ι : Type*}
(b : Basis ι ℤ L) :
Basis ι ℤ (ZLattice.comap K L e.toLinearMap) := b.map (ZLattice.comap_equiv K L e)

@[simp]
theorem Basis.ofZLatticeComap_apply (e : F ≃ₗ[K] E) {ι : Type*}
(b : Basis ι ℤ L) (i : ι) :
b.ofZLatticeComap K L e i = e.symm (b i) := by simp [Basis.ofZLatticeComap]

@[simp]
theorem Basis.ofZLatticeComap_repr_apply (e : F ≃ₗ[K] E) {ι : Type*} (b : Basis ι ℤ L) (x : L)
(i : ι) :
(b.ofZLatticeComap K L e).repr (ZLattice.comap_equiv K L e x) i = b.repr x i := by
simp [Basis.ofZLatticeComap]

end comap

end ZLattice
28 changes: 20 additions & 8 deletions Mathlib/Algebra/Module/ZLattice/Covolume.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ import Mathlib.Algebra.Module.ZLattice.Basic
/-!
# Covolume of ℤ-lattices
Let `E` be a finite dimensional real vector space with an inner product.
Let `E` be a finite dimensional real vector space.
Let `L` be a `ℤ`-lattice `L` defined as a discrete `ℤ`-submodule of `E` that spans `E` over `ℝ`.
Expand All @@ -29,7 +29,7 @@ noncomputable section

namespace ZLattice

open Submodule MeasureTheory Module MeasureTheory Module
open Submodule MeasureTheory Module MeasureTheory Module ZSpan

section General

Expand Down Expand Up @@ -61,18 +61,30 @@ theorem covolume_eq_measure_fundamentalDomain {F : Set E} (h : IsAddFundamentalD
theorem covolume_ne_zero : covolume L μ ≠ 0 := by
rw [covolume_eq_measure_fundamentalDomain L μ (isAddFundamentalDomain (Free.chooseBasis ℤ L) μ),
ENNReal.toReal_ne_zero]
refine ⟨ZSpan.measure_fundamentalDomain_ne_zero _, ne_of_lt ?_⟩
exact Bornology.IsBounded.measure_lt_top (ZSpan.fundamentalDomain_isBounded _)
refine ⟨measure_fundamentalDomain_ne_zero _, ne_of_lt ?_⟩
exact Bornology.IsBounded.measure_lt_top (fundamentalDomain_isBounded _)

theorem covolume_pos : 0 < covolume L μ :=
lt_of_le_of_ne ENNReal.toReal_nonneg (covolume_ne_zero L μ).symm

theorem covolume_comap {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] [FiniteDimensional ℝ F]
[MeasurableSpace F] [BorelSpace F] (ν : Measure F := by volume_tac) [Measure.IsAddHaarMeasure ν]
{e : F ≃L[ℝ] E} (he : MeasurePreserving e ν μ) :
covolume (ZLattice.comap ℝ L e.toLinearMap) ν = covolume L μ := by
rw [covolume_eq_measure_fundamentalDomain _ _ (isAddFundamentalDomain (Free.chooseBasis ℤ L) μ),
covolume_eq_measure_fundamentalDomain _ _ ((isAddFundamentalDomain
((Free.chooseBasis ℤ L).ofZLatticeComap ℝ L e.toLinearEquiv) ν)), ← he.measure_preimage
(fundamentalDomain_measurableSet _).nullMeasurableSet, ← e.image_symm_eq_preimage,
← e.symm.coe_toLinearEquiv, map_fundamentalDomain]
congr!
ext; simp

theorem covolume_eq_det_mul_measure {ι : Type*} [Fintype ι] [DecidableEq ι] (b : Basis ι ℤ L)
(b₀ : Basis ι ℝ E) :
covolume L μ = |b₀.det ((↑) ∘ b)| * (μ (ZSpan.fundamentalDomain b₀)).toReal := by
covolume L μ = |b₀.det ((↑) ∘ b)| * (μ (fundamentalDomain b₀)).toReal := by
rw [covolume_eq_measure_fundamentalDomain L μ (isAddFundamentalDomain b μ),
ZSpan.measure_fundamentalDomain _ _ b₀,
measure_congr (ZSpan.fundamentalDomain_ae_parallelepiped b₀ μ), ENNReal.toReal_mul,
measure_fundamentalDomain _ _ b₀,
measure_congr (fundamentalDomain_ae_parallelepiped b₀ μ), ENNReal.toReal_mul,
ENNReal.toReal_ofReal (by positivity)]
congr
ext
Expand All @@ -82,7 +94,7 @@ theorem covolume_eq_det {ι : Type*} [Fintype ι] [DecidableEq ι] (L : Submodul
[DiscreteTopology L] [IsZLattice ℝ L] (b : Basis ι ℤ L) :
covolume L = |(Matrix.of ((↑) ∘ b)).det| := by
rw [covolume_eq_measure_fundamentalDomain L volume (isAddFundamentalDomain b volume),
ZSpan.volume_fundamentalDomain, ENNReal.toReal_ofReal (by positivity)]
volume_fundamentalDomain, ENNReal.toReal_ofReal (by positivity)]
congr
ext1
exact b.ofZLatticeBasis_apply ℝ L _
Expand Down

0 comments on commit 3bf558f

Please sign in to comment.