Skip to content

Commit

Permalink
perf(FunLike.Basic): beta reduce CoeFun.coe (#7905)
Browse files Browse the repository at this point in the history
This eliminates `(fun a ↦ β) α` in the type when applying a `FunLike`.




Co-authored-by: Matthew Ballard <matt@mrb.email>
Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
  • Loading branch information
3 people authored and alexkeizer committed Nov 17, 2023
1 parent 405b2c4 commit 46283df
Show file tree
Hide file tree
Showing 87 changed files with 111 additions and 164 deletions.
1 change: 0 additions & 1 deletion Archive/Sensitivity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -455,7 +455,6 @@ theorem huang_degree_theorem (H : Set (Q m.succ)) (hH : Card H ≥ 2 ^ m + 1) :
|(coeffs y).sum fun (i : Q m.succ) (a : ℝ) =>
a • (ε q ∘ f m.succ ∘ fun i : Q m.succ => e i) i| := by
erw [(f m.succ).map_finsupp_total, (ε q).map_finsupp_total, Finsupp.total_apply]
rfl
_ ≤ ∑ p in (coeffs y).support, |coeffs y p * (ε q <| f m.succ <| e p)| :=
(norm_sum_le _ fun p => coeffs y p * _)
_ = ∑ p in (coeffs y).support, |coeffs y p| * ite (p ∈ q.adjacent) 1 0 := by
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Algebra/RestrictScalars.lean
Original file line number Diff line number Diff line change
Expand Up @@ -217,8 +217,8 @@ theorem RestrictScalars.ringEquiv_map_smul (r : R) (x : RestrictScalars R S A) :
instance RestrictScalars.algebra : Algebra R (RestrictScalars R S A) :=
{ (algebraMap S A).comp (algebraMap R S) with
smul := (· • ·)
commutes' := fun _ _ ↦ Algebra.commutes' _ _
smul_def' := fun _ _ ↦ Algebra.smul_def' _ _ }
commutes' := fun _ _ ↦ Algebra.commutes' (A := A) _ _
smul_def' := fun _ _ ↦ Algebra.smul_def' (A := A) _ _ }

@[simp]
theorem RestrictScalars.ringEquiv_algebraMap (r : R) :
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/Algebra/Category/ModuleCat/ChangeOfRings.lean
Original file line number Diff line number Diff line change
Expand Up @@ -333,8 +333,8 @@ instance mulAction : MulAction S <| (restrictScalars f).obj ⟨S⟩ →ₗ[R] M

instance distribMulAction : DistribMulAction S <| (restrictScalars f).obj ⟨S⟩ →ₗ[R] M :=
{ CoextendScalars.mulAction f _ with
smul_add := fun s g h => LinearMap.ext fun t : S => by simp
smul_zero := fun s => LinearMap.ext fun t : S => by simp }
smul_add := fun s g h => LinearMap.ext fun _ : S => by simp
smul_zero := fun s => LinearMap.ext fun _ : S => by simp }
#align category_theory.Module.coextend_scalars.distrib_mul_action ModuleCat.CoextendScalars.distribMulAction

/-- `S` acts on Hom(S, M) by `s • g = x ↦ g (x • s)`, this action defines an `S`-module structure on
Expand Down Expand Up @@ -586,8 +586,7 @@ def HomEquiv.toRestrictScalars {X Y} (g : (extendScalars f).obj X ⟶ Y) :
letI : Module R S := Module.compHom S f
letI : Module R Y := Module.compHom Y f
dsimp
rw [RestrictScalars.smul_def, ← LinearMap.map_smul]
erw [tmul_smul]
erw [RestrictScalars.smul_def, ← LinearMap.map_smul, tmul_smul]
congr
#align category_theory.Module.extend_restrict_scalars_adj.hom_equiv.to_restrict_scalars ModuleCat.ExtendRestrictScalarsAdj.HomEquiv.toRestrictScalars

Expand Down Expand Up @@ -658,6 +657,7 @@ def homEquiv {X Y} :
change S at x
dsimp
erw [← LinearMap.map_smul, ExtendScalars.smul_tmul, mul_one x]
rfl
· rw [map_add, map_add, ih1, ih2]
right_inv g := by
letI m1 : Module R S := Module.compHom S f; letI m2 : Module R Y := Module.compHom Y f
Expand Down
5 changes: 1 addition & 4 deletions Mathlib/Algebra/DirectLimit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -501,7 +501,6 @@ theorem of.zero_exact_aux2 {x : FreeCommRing (Σi, G i)} {s t} (hxs : IsSupporte
dsimp only
-- porting note: Lean 3 could get away with far fewer hints for inputs in the line below
have := DirectedSystem.map_map (fun i j h => f' i j h) (hj p hps) hjk
dsimp only at this
rw [this]
· rintro x y ihx ihy
rw [(restriction _).map_add, (FreeCommRing.lift _).map_add, (f' j k hjk).map_add, ihx, ihy,
Expand Down Expand Up @@ -529,7 +528,6 @@ theorem of.zero_exact_aux [Nonempty ι] [IsDirected ι (· ≤ ·)] {x : FreeCom
restriction_of, dif_pos, lift_of, lift_of]
dsimp only
have := DirectedSystem.map_map (fun i j h => f' i j h) hij (le_refl j : j ≤ j)
dsimp only at this
rw [this]
exact sub_self _
exacts [Or.inr rfl, Or.inl rfl]
Expand All @@ -539,8 +537,7 @@ theorem of.zero_exact_aux [Nonempty ι] [IsDirected ι (· ≤ ·)] {x : FreeCom
-- porting note: the Lean3 proof contained `rw [restriction_of]`, but this
-- lemma does not seem to work here
· rw [RingHom.map_sub, RingHom.map_sub]
erw [lift_of, dif_pos rfl, RingHom.map_one, RingHom.map_one, lift_of,
RingHom.map_one, sub_self]
erw [lift_of, dif_pos rfl, RingHom.map_one, lift_of, RingHom.map_one, sub_self]
· refine'
⟨i, {⟨i, x + y⟩, ⟨i, x⟩, ⟨i, y⟩}, _,
isSupported_sub (isSupported_of.2 <| Or.inl rfl)
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Group/Hom/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -443,7 +443,7 @@ theorem map_pow [Monoid G] [Monoid H] [MonoidHomClass F G H] (f : F) (a : G) :
theorem map_zpow' [DivInvMonoid G] [DivInvMonoid H] [MonoidHomClass F G H]
(f : F) (hf : ∀ x : G, f x⁻¹ = (f x)⁻¹) (a : G) : ∀ n : ℤ, f (a ^ n) = f a ^ n
| (n : ℕ) => by rw [zpow_ofNat, map_pow, zpow_ofNat]
| Int.negSucc n => by rw [zpow_negSucc, hf, map_pow, ← zpow_negSucc, ← zpow_negSucc]
| Int.negSucc n => by rw [zpow_negSucc, hf, map_pow, ← zpow_negSucc]
#align map_zpow' map_zpow'
#align map_zsmul' map_zsmul'

Expand Down
3 changes: 1 addition & 2 deletions Mathlib/Algebra/Homology/ModuleCat.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,9 +120,8 @@ example (f g : C ⟶ D) (h : Homotopy f g) (i : ι) :
erw [LinearMap.add_apply]
rw [LinearMap.add_apply, prevD_eq_toPrev_dTo, dNext_eq_dFrom_fromNext]
-- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
erw [comp_apply, comp_apply, comp_apply]
erw [comp_apply, comp_apply]
erw [x.2, map_zero]
dsimp
abel

end ModuleCat
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Module/Torsion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -375,7 +375,7 @@ variable (R M)

theorem torsion_gc :
@GaloisConnection (Submodule R M) (Ideal R)ᵒᵈ _ _ annihilator fun I =>
torsionBySet R M <| OrderDual.ofDual I :=
torsionBySet R M ↑(OrderDual.ofDual I) :=
fun _ _ =>
fun h x hx => (mem_torsionBySet_iff _ _).mpr fun ⟨_, ha⟩ => mem_annihilator.mp (h ha) x hx,
fun h a ha => mem_annihilator.mpr fun _ hx => (mem_torsionBySet_iff _ _).mp (h hx) ⟨a, ha⟩⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Order/Monoid/ToMulBot.lean
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ theorem toMulBot_zero : toMulBot (0 : WithZero (Multiplicative α)) = Multiplica

@[simp]
theorem toMulBot_coe (x : Multiplicative α) :
toMulBot ↑x = Multiplicative.ofAdd (Multiplicative.toAdd x : WithBot α) :=
toMulBot ↑x = Multiplicative.ofAdd (↑(Multiplicative.toAdd x) : WithBot α) :=
rfl
#align with_zero.to_mul_bot_coe WithZero.toMulBot_coe

Expand Down
5 changes: 3 additions & 2 deletions Mathlib/Algebra/Polynomial/BigOperators.lean
Original file line number Diff line number Diff line change
Expand Up @@ -267,9 +267,10 @@ theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multise
nontriviality R
convert multiset_prod_X_sub_C_nextCoeff (by assumption)
rw [nextCoeff]; split_ifs with h
· rw [natDegree_multiset_prod_of_monic] at h <;> simp only [Multiset.mem_map] at *
· rw [natDegree_multiset_prod_of_monic] at h
swap
· rintro _ ⟨_, _, rfl⟩
· simp only [Multiset.mem_map]
rintro _ ⟨_, _, rfl⟩
apply monic_X_sub_C
simp_rw [Multiset.sum_eq_zero_iff, Multiset.mem_map] at h
contrapose! h
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Quaternion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1267,7 +1267,7 @@ theorem im_sq : a.im ^ 2 = -normSq a.im := by
simp_rw [sq, ← star_mul_self, im_star, neg_mul, neg_neg]
#align quaternion.im_sq Quaternion.im_sq

theorem coe_normSq_add : (normSq (a + b) : ℍ[R]) = normSq a + a * star b + b * star a + normSq b :=
theorem coe_normSq_add : normSq (a + b) = normSq a + a * star b + b * star a + normSq b :=
by simp only [star_add, ← self_mul_star, mul_add, add_mul, add_assoc, add_left_comm]
#align quaternion.coe_norm_sq_add Quaternion.coe_normSq_add

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Ring/BooleanRing.lean
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,7 @@ theorem toBoolAlg_add_add_mul (a b : α) : toBoolAlg (a + b + a * b) = toBoolAlg

@[simp]
theorem toBoolAlg_add (a b : α) : toBoolAlg (a + b) = toBoolAlg a ∆ toBoolAlg b :=
(ofBoolAlg_symmDiff _ _).symm
(ofBoolAlg_symmDiff a b).symm
#align to_boolalg_add toBoolAlg_add

/-- Turn a ring homomorphism from Boolean rings `α` to `β` into a bounded lattice homomorphism
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/AlgebraicGeometry/GammaSpecAdjunction.lean
Original file line number Diff line number Diff line change
Expand Up @@ -304,10 +304,10 @@ def identityToΓSpec : 𝟭 LocallyRingedSpace.{u} ⟶ Γ.rightOp ⋙ Spec.toLoc
-- The next six lines were `rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk]` before
-- leanprover/lean4#2644
have : (ContinuousMap.mk (toΓSpecFun Y) (toΓSpec_continuous _)) (f.val.base x)
= toΓSpecFun Y (f.val.base x) := by erw [ContinuousMap.coe_mk]; rfl
= toΓSpecFun Y (f.val.base x) := by rw [ContinuousMap.coe_mk]
erw [this]
have : (ContinuousMap.mk (toΓSpecFun X) (toΓSpec_continuous _)) x
= toΓSpecFun X x := by erw [ContinuousMap.coe_mk]
= toΓSpecFun X x := by rw [ContinuousMap.coe_mk]
erw [this]
dsimp [toΓSpecFun]
-- This used to be `rw`, but we need `erw` after leanprover/lean4#2644
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -485,7 +485,7 @@ theorem vanishingIdeal_strict_anti_mono_iff {s t : Set (PrimeSpectrum R)} (hs :
/-- The antitone order embedding of closed subsets of `Spec R` into ideals of `R`. -/
def closedsEmbedding (R : Type*) [CommRing R] :
(TopologicalSpace.Closeds <| PrimeSpectrum R)ᵒᵈ ↪o Ideal R :=
OrderEmbedding.ofMapLEIff (fun s => vanishingIdeal <| OrderDual.ofDual s) fun s _ =>
OrderEmbedding.ofMapLEIff (fun s => vanishingIdeal ↑(OrderDual.ofDual s)) fun s _ =>
(vanishingIdeal_anti_mono_iff s.2).symm
#align prime_spectrum.closeds_embedding PrimeSpectrum.closedsEmbedding

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/Scheme.lean
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,7 @@ lemma basicOpen_restrict (i : V ⟶ U) (f : X.presheaf.obj (op U)) :
theorem preimage_basicOpen {X Y : Scheme} (f : X ⟶ Y) {U : Opens Y.carrier}
(r : Y.presheaf.obj <| op U) :
(Opens.map f.1.base).obj (Y.basicOpen r) =
@Scheme.basicOpen X ((Opens.map f.1.base).obj U) (f.1.c.app _ r) :=
@Scheme.basicOpen X ((Opens.map f.1.base).obj U) (f.1.c.app (op U) r) :=
LocallyRingedSpace.preimage_basicOpen f r
#align algebraic_geometry.Scheme.preimage_basic_open AlgebraicGeometry.Scheme.preimage_basicOpen

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/AlgebraicGeometry/Spec.lean
Original file line number Diff line number Diff line change
Expand Up @@ -262,9 +262,9 @@ def Spec.locallyRingedSpaceMap {R S : CommRingCat} (f : R ⟶ S) :
replace ha := (stalkIso S p).hom.isUnit_map ha
rw [← comp_apply, show localizationToStalk S p = (stalkIso S p).inv from rfl,
Iso.inv_hom_id, id_apply] at ha
-- Porting note : `R` had to be made explicit
-- Porting note : `f` had to be made explicit
replace ha := IsLocalRingHom.map_nonunit
(R := Localization.AtPrime (PrimeSpectrum.comap f p).asIdeal) _ ha
(f := (Localization.localRingHom (PrimeSpectrum.comap f p).asIdeal p.asIdeal f _)) _ ha
convert RingHom.isUnit_map (stalkIso R (PrimeSpectrum.comap f p)).inv ha
erw [← comp_apply, show stalkToFiberRingHom R _ = (stalkIso _ _).hom from rfl,
Iso.hom_inv_id, id_apply]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/StructureSheaf.lean
Original file line number Diff line number Diff line change
Expand Up @@ -483,7 +483,7 @@ def localizationToStalk (x : PrimeSpectrum.Top R) :
@[simp]
theorem localizationToStalk_of (x : PrimeSpectrum.Top R) (f : R) :
localizationToStalk R x (algebraMap _ (Localization _) f) = toStalk R x f :=
IsLocalization.lift_eq _ f
IsLocalization.lift_eq (S := Localization x.asIdeal.primeCompl) _ f
#align algebraic_geometry.structure_sheaf.localization_to_stalk_of AlgebraicGeometry.StructureSheaf.localizationToStalk_of

@[simp]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Calculus/AffineMap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@ variable [NormedAddCommGroup W] [NormedSpace 𝕜 W]
theorem contDiff {n : ℕ∞} (f : V →A[𝕜] W) : ContDiff 𝕜 n f := by
rw [f.decomp]
apply f.contLinear.contDiff.add
simp only
exact contDiff_const
#align continuous_affine_map.cont_diff ContinuousAffineMap.contDiff

Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Convex/Between.lean
Original file line number Diff line number Diff line change
Expand Up @@ -538,7 +538,6 @@ theorem Sbtw.affineCombination_of_mem_affineSpan_pair [NoZeroDivisors R] [NoZero
rw [hr i his, sbtw_mul_sub_add_iff] at hs
change ∀ i ∈ s, w i = (r • (w₂ - w₁) + w₁) i at hr
rw [s.affineCombination_congr hr fun _ _ => rfl]
dsimp only
rw [← s.weightedVSub_vadd_affineCombination, s.weightedVSub_const_smul,
← s.affineCombination_vsub, ← lineMap_apply, sbtw_lineMap_iff, and_iff_left hs.2,
← @vsub_ne_zero V, s.affineCombination_vsub]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Fourier/AddCircle.lean
Original file line number Diff line number Diff line change
Expand Up @@ -570,7 +570,6 @@ theorem fourierCoeffOn_of_hasDerivAt {a b : ℝ} (hab : a < b) {f f' : ℝ →
conv => pattern (occs := 1 2 3) fourier _ _ * _ <;> (rw [mul_comm])
rw [integral_mul_deriv_eq_deriv_mul hf (fun x _ => has_antideriv_at_fourier_neg hT hn x) hf'
(((map_continuous (fourier (-n))).comp (AddCircle.continuous_mk' _)).intervalIntegrable _ _)]
dsimp only
have : ∀ u v w : ℂ, u * ((b - a : ℝ) / v * w) = (b - a : ℝ) / v * (u * w) := by intros; ring
conv in intervalIntegral _ _ _ _ => congr; ext; rw [this]
rw [(by ring : ((b - a : ℝ) : ℂ) / (-2 * π * I * n) = ((b - a : ℝ) : ℂ) * (1 / (-2 * π * I * n)))]
Expand Down
4 changes: 1 addition & 3 deletions Mathlib/Analysis/Fourier/FourierTransform.lean
Original file line number Diff line number Diff line change
Expand Up @@ -104,9 +104,7 @@ theorem fourierIntegral_comp_add_right [MeasurableAdd V] (e : Multiplicative
ext1 w
dsimp only [fourierIntegral, Function.comp_apply]
conv in L _ => rw [← add_sub_cancel v v₀]
rw [integral_add_right_eq_self fun v : V => e[-L (v - v₀) w] • f v]
dsimp only
rw [← integral_smul]
rw [integral_add_right_eq_self fun v : V => e[-L (v - v₀) w] • f v, ← integral_smul]
congr 1 with v
rw [← smul_assoc, smul_eq_mul, ← Submonoid.coe_mul, ← e.map_mul, ← ofAdd_add, ←
LinearMap.neg_apply, ← sub_eq_add_neg, ← LinearMap.sub_apply, LinearMap.map_sub, neg_sub]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/SpecialFunctions/Complex/Arg.lean
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,6 @@ theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
simp only [← ofReal_one, ← ofReal_bit0, ← ofReal_mul, ← ofReal_add, ofReal_int_cast]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/CategoryTheory/Limits/Opposites.lean
Original file line number Diff line number Diff line change
Expand Up @@ -790,14 +790,14 @@ noncomputable def pullbackIsoUnopPushout {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z)
theorem pullbackIsoUnopPushout_inv_fst {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
[HasPushout f.op g.op] :
(pullbackIsoUnopPushout f g).inv ≫ pullback.fst = (pushout.inl : _ ⟶ pushout f.op g.op).unop :=
(IsLimit.conePointUniqueUpToIso_inv_comp _ _ _).trans (by simp)
(IsLimit.conePointUniqueUpToIso_inv_comp _ _ _).trans (by simp [unop_id (X := { unop := X })])
#align category_theory.limits.pullback_iso_unop_pushout_inv_fst CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst

@[reassoc (attr := simp)]
theorem pullbackIsoUnopPushout_inv_snd {X Y Z : C} (f : X ⟶ Z) (g : Y ⟶ Z) [HasPullback f g]
[HasPushout f.op g.op] :
(pullbackIsoUnopPushout f g).inv ≫ pullback.snd = (pushout.inr : _ ⟶ pushout f.op g.op).unop :=
(IsLimit.conePointUniqueUpToIso_inv_comp _ _ _).trans (by simp)
(IsLimit.conePointUniqueUpToIso_inv_comp _ _ _).trans (by simp [unop_id (X := { unop := Y })])
#align category_theory.limits.pullback_iso_unop_pushout_inv_snd CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd

@[reassoc (attr := simp)]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/SingleObj.lean
Original file line number Diff line number Diff line change
Expand Up @@ -231,7 +231,7 @@ set_option linter.uppercaseLean3 false in
#align Mon.to_Cat_full MonCat.toCatFull

instance toCat_faithful : Faithful toCat where
map_injective h := by simpa [toCat] using h
map_injective h := by rwa [toCat, (SingleObj.mapHom _ _).apply_eq_iff_eq] at h
set_option linter.uppercaseLean3 false in
#align Mon.to_Cat_faithful MonCat.toCat_faithful

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Finset/Image.lean
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ variable {f : α ↪ β} {s : Finset α}

@[simp]
theorem mem_map {b : β} : b ∈ s.map f ↔ ∃ a ∈ s, f a = b :=
mem_map.trans <| by simp only [exists_prop]; rfl
Multiset.mem_map
#align finset.mem_map Finset.mem_map

--Porting note: Higher priority to apply before `mem_map`.
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Finsupp/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1401,7 +1401,7 @@ section

variable [Zero M] [MonoidWithZero R] [MulActionWithZero R M]

@[simp]
@[simp, nolint simpNF] -- `simpNF` incorrectly complains the LHS doesn't simplify.
theorem single_smul (a b : α) (f : α → M) (r : R) : single a r b • f a = single a (r • f b) b := by
by_cases h : a = b <;> simp [h]
#align finsupp.single_smul Finsupp.single_smul
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Finsupp/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -774,7 +774,7 @@ theorem mapRange_apply {f : M → N} {hf : f 0 = 0} {g : α →₀ M} {a : α} :

@[simp]
theorem mapRange_zero {f : M → N} {hf : f 0 = 0} : mapRange f hf (0 : α →₀ M) = 0 :=
ext fun a => by simp only [hf, zero_apply, mapRange_apply]
ext fun _ => by simp only [hf, zero_apply, mapRange_apply]
#align finsupp.map_range_zero Finsupp.mapRange_zero

@[simp]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Finsupp/Pointwise.lean
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ instance pointwiseScalar [Semiring β] : SMul (α → β) (α →₀ β) where
#align finsupp.pointwise_scalar Finsupp.pointwiseScalar

@[simp]
theorem coe_pointwise_smul [Semiring β] (f : α → β) (g : α →₀ β) : FunLike.coe (f • g) = f • g :=
theorem coe_pointwise_smul [Semiring β] (f : α → β) (g : α →₀ β) : (f • g) = f • g :=
rfl
#align finsupp.coe_pointwise_smul Finsupp.coe_pointwise_smul

Expand Down
3 changes: 2 additions & 1 deletion Mathlib/Data/FunLike/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,8 @@ namespace FunLike

variable {F α β} [i : FunLike F α β]

instance (priority := 100) hasCoeToFun : CoeFun F fun _ ↦ ∀ a : α, β a where coe := FunLike.coe
instance (priority := 100) hasCoeToFun : CoeFun F (fun _ ↦ ∀ a : α, β a) where
coe := @FunLike.coe _ _ β _ -- need to make explicit to beta reduce for non-dependent functions

#eval Lean.Elab.Command.liftTermElabM do
Std.Tactic.Coe.registerCoercion ``FunLike.coe
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Data/IsROrC/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -830,11 +830,11 @@ noncomputable instance Real.isROrC : IsROrC ℝ where
mul_re_ax z w := by simp only [sub_zero, mul_zero, AddMonoidHom.zero_apply, AddMonoidHom.id_apply]
mul_im_ax z w := by simp only [add_zero, zero_mul, mul_zero, AddMonoidHom.zero_apply]
conj_re_ax z := by simp only [starRingEnd_apply, star_id_of_comm]
conj_im_ax z := by simp only [neg_zero, AddMonoidHom.zero_apply]
conj_im_ax _ := by simp only [neg_zero, AddMonoidHom.zero_apply]
conj_I_ax := by simp only [RingHom.map_zero, neg_zero]
norm_sq_eq_def_ax z := by simp only [sq, Real.norm_eq_abs, ← abs_mul, abs_mul_self z, add_zero,
mul_zero, AddMonoidHom.zero_apply, AddMonoidHom.id_apply]
mul_im_I_ax z := by simp only [mul_zero, AddMonoidHom.zero_apply]
mul_im_I_ax _ := by simp only [mul_zero, AddMonoidHom.zero_apply]
le_iff_re_im := (and_iff_left rfl).symm
#align real.is_R_or_C Real.isROrC

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/MvPolynomial/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1702,7 +1702,7 @@ theorem eval₂_mem {f : R →+* S} {p : MvPolynomial σ R} {s : subS}
· subst h
rw [MvPolynomial.not_mem_support_iff.1 ha, map_zero]
exact zero_mem _
· rwa [if_neg h, zero_add] at this
· rwa [zero_add] at this
#align mv_polynomial.eval₂_mem MvPolynomial.eval₂_mem

theorem eval_mem {p : MvPolynomial σ S} {s : subS} (hs : ∀ i ∈ p.support, p.coeff i ∈ s) {v : σ → S}
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Nat/Factorization/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -429,7 +429,7 @@ theorem factorization_prime_le_iff_dvd {d n : ℕ} (hd : d ≠ 0) (hn : n ≠ 0)
(∀ p : ℕ, p.Prime → d.factorization p ≤ n.factorization p) ↔ d ∣ n := by
rw [← factorization_le_iff_dvd hd hn]
refine' ⟨fun h p => (em p.Prime).elim (h p) fun hp => _, fun h p _ => h p⟩
simp_rw [factorization_eq_zero_of_non_prime _ hp, le_refl]
simp_rw [factorization_eq_zero_of_non_prime _ hp]
#align nat.factorization_prime_le_iff_dvd Nat.factorization_prime_le_iff_dvd

theorem pow_succ_factorization_not_dvd {n p : ℕ} (hn : n ≠ 0) (hp : p.Prime) :
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Polynomial/RingDivision.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1328,7 +1328,7 @@ theorem card_roots_le_map [IsDomain A] [IsDomain B] {p : A[X]} {f : A →+* B} (
theorem card_roots_le_map_of_injective [IsDomain A] [IsDomain B] {p : A[X]} {f : A →+* B}
(hf : Function.Injective f) : Multiset.card p.roots ≤ Multiset.card (p.map f).roots := by
by_cases hp0 : p = 0
· simp only [hp0, roots_zero, Polynomial.map_zero, Multiset.card_zero]; rfl
· simp only [hp0, roots_zero, Polynomial.map_zero, Multiset.card_zero]
exact card_roots_le_map ((Polynomial.map_ne_zero_iff hf).mpr hp0)
#align polynomial.card_roots_le_map_of_injective Polynomial.card_roots_le_map_of_injective

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/ZMod/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -794,7 +794,7 @@ def chineseRemainder {m n : ℕ} (h : m.Coprime n) : ZMod (m * n) ≃+* ZMod m
let to_fun : ZMod (m * n) → ZMod m × ZMod n :=
ZMod.castHom (show m.lcm n ∣ m * n by simp [Nat.lcm_dvd_iff]) (ZMod m × ZMod n)
let inv_fun : ZMod m × ZMod n → ZMod (m * n) := fun x =>
if m * n = 0 then if m = 1 then RingHom.snd _ _ x else RingHom.fst _ _ x
if m * n = 0 then if m = 1 then RingHom.snd _ (ZMod n) x else RingHom.fst (ZMod m) _ x
else Nat.chineseRemainder h x.1.val x.2.val
have inv : Function.LeftInverse inv_fun to_fun ∧ Function.RightInverse inv_fun to_fun :=
if hmn0 : m * n = 0 then by
Expand Down
Loading

0 comments on commit 46283df

Please sign in to comment.