Skip to content

Commit

Permalink
Trigger CI for leanprover/lean4#3188
Browse files Browse the repository at this point in the history
  • Loading branch information
leanprover-community-mathlib4-bot committed Jan 17, 2024
2 parents c86add5 + 4792383 commit cac9e9b
Show file tree
Hide file tree
Showing 81 changed files with 2,009 additions and 1,605 deletions.
4 changes: 2 additions & 2 deletions Archive/Imo/Imo1998Q2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@ Copyright (c) 2020 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash
-/
import Mathlib.Algebra.BigOperators.Order
import Mathlib.Data.Fintype.Prod
import Mathlib.Data.Int.Parity
import Mathlib.Algebra.BigOperators.Order
import Mathlib.Tactic.Ring
import Mathlib.GroupTheory.GroupAction.Ring
import Mathlib.Tactic.NoncommRing

#align_import imo.imo1998_q2 from "leanprover-community/mathlib"@"308826471968962c6b59c7ff82a22757386603e3"
Expand Down
1 change: 1 addition & 0 deletions Archive/MiuLanguage/DecisionSuf.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Gihan Marasingha
-/
import Archive.MiuLanguage.DecisionNec
import Mathlib.Data.Nat.Pow
import Mathlib.Tactic.Linarith

#align_import miu_language.decision_suf from "leanprover-community/mathlib"@"f694c7dead66f5d4c80f446c796a5aad14707f0e"
Expand Down
2 changes: 2 additions & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2886,6 +2886,7 @@ import Mathlib.Order.CompleteBooleanAlgebra
import Mathlib.Order.CompleteLattice
import Mathlib.Order.CompleteLatticeIntervals
import Mathlib.Order.CompletePartialOrder
import Mathlib.Order.CompleteSublattice
import Mathlib.Order.Concept
import Mathlib.Order.ConditionallyCompleteLattice.Basic
import Mathlib.Order.ConditionallyCompleteLattice.Finset
Expand Down Expand Up @@ -3004,6 +3005,7 @@ import Mathlib.Probability.Density
import Mathlib.Probability.Distributions.Exponential
import Mathlib.Probability.Distributions.Gamma
import Mathlib.Probability.Distributions.Gaussian
import Mathlib.Probability.Distributions.Geometric
import Mathlib.Probability.Distributions.Poisson
import Mathlib.Probability.IdentDistrib
import Mathlib.Probability.Independence.Basic
Expand Down
6 changes: 1 addition & 5 deletions Mathlib/Algebra/BigOperators/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,16 +5,12 @@ Authors: Johannes Hölzl
-/
import Mathlib.Algebra.BigOperators.Multiset.Lemmas
import Mathlib.Algebra.Function.Indicator
import Mathlib.Algebra.Group.Equiv.Basic
import Mathlib.Algebra.Group.Pi
import Mathlib.Algebra.GroupPower.Lemmas
import Mathlib.Algebra.Ring.Opposite
import Mathlib.Data.Finset.Powerset
import Mathlib.Data.Finset.Sigma
import Mathlib.Data.Finset.Sum
import Mathlib.Data.Fintype.Pi
import Mathlib.Data.Multiset.Powerset
import Mathlib.Data.Set.Pairwise.Basic
import Mathlib.Data.Int.Cast.Lemmas

#align_import algebra.big_operators.basic from "leanprover-community/mathlib"@"65a1391a0106c9204fe45bc73a039f056558cb83"

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/CharZero/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Algebra.Function.Support
import Mathlib.Algebra.GroupPower.Lemmas
import Mathlib.Algebra.Order.Monoid.WithTop
import Mathlib.Data.Nat.Cast.Field

#align_import algebra.char_zero.lemmas from "leanprover-community/mathlib"@"acee671f47b8e7972a1eb6f4eed74b4b3abce829"
Expand Down
4 changes: 0 additions & 4 deletions Mathlib/Algebra/FreeMonoid/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -31,10 +31,6 @@ def FreeMonoid (α) := List α

namespace FreeMonoid

-- Porting note: TODO. Check this is still needed
@[to_additive]
instance [DecidableEq α] : DecidableEq (FreeMonoid α) := instDecidableEqList

/-- The identity equivalence between `FreeMonoid α` and `List α`. -/
@[to_additive "The identity equivalence between `FreeAddMonoid α` and `List α`."]
def toList : FreeMonoid α ≃ List α := Equiv.refl _
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Algebra/GCDMonoid/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Jens Wagemaker
-/
import Mathlib.Algebra.Associated
import Mathlib.Algebra.GroupPower.Lemmas
import Mathlib.Algebra.Ring.Regular
import Mathlib.Tactic.Common

Expand Down
4 changes: 1 addition & 3 deletions Mathlib/Algebra/Group/Conj.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Chris Hughes, Michael Howes
-/
import Mathlib.Algebra.Group.Aut
import Mathlib.Algebra.Group.Hom.Defs
import Mathlib.Algebra.Group.Semiconj.Defs
import Mathlib.Algebra.GroupWithZero.Basic
import Mathlib.Algebra.Group.Semiconj.Units

#align_import algebra.group.conj from "leanprover-community/mathlib"@"0743cc5d9d86bcd1bba10f480e948a257d65056f"

Expand Down
143 changes: 142 additions & 1 deletion Mathlib/Algebra/GroupPower/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ Authors: Jeremy Avigad, Robert Y. Lewis
-/
import Mathlib.Algebra.Group.Commute.Basic
import Mathlib.Algebra.GroupWithZero.Defs
import Mathlib.Data.Int.Defs
import Mathlib.Tactic.Common

#align_import algebra.group_power.basic from "leanprover-community/mathlib"@"9b2660e1b25419042c8da10bf411aa3c67f14383"
Expand All @@ -17,7 +18,7 @@ We separate this from group, because it depends on `ℕ`,
which in turn depends on other parts of algebra.
This module contains lemmas about `a ^ n` and `n • a`, where `n : ℕ` or `n : ℤ`.
Further lemmas can be found in `Algebra.GroupPower.Lemmas`.
Further lemmas can be found in `Algebra.GroupPower.Ring`.
The analogous results for groups with zero can be found in `Algebra.GroupWithZero.Power`.
Expand All @@ -31,6 +32,8 @@ The analogous results for groups with zero can be found in `Algebra.GroupWithZer
We adopt the convention that `0^0 = 1`.
-/

open Int

universe u v w x y z u₁ u₂

variable {α : Type*} {M : Type u} {N : Type v} {G : Type w} {H : Type x} {A : Type y} {B : Type z}
Expand Down Expand Up @@ -333,6 +336,44 @@ protected theorem Commute.mul_zpow (h : Commute a b) : ∀ i : ℤ, (a * b) ^ i
#align commute.mul_zpow Commute.mul_zpow
#align add_commute.zsmul_add AddCommute.zsmul_add

-- Note that `mul_zsmul` and `zpow_mul` have the primes swapped
-- when additivised since their argument order,
-- and therefore the more "natural" choice of lemma, is reversed.
@[to_additive mul_zsmul'] lemma zpow_mul (a : α) : ∀ m n : ℤ, a ^ (m * n) = (a ^ m) ^ n
| (m : ℕ), (n : ℕ) => by
rw [zpow_ofNat, zpow_ofNat, ← pow_mul, ← zpow_ofNat]
rfl
| (m : ℕ), -[n+1] => by
rw [zpow_ofNat, zpow_negSucc, ← pow_mul, ofNat_mul_negSucc, zpow_neg, inv_inj, ← zpow_ofNat]
| -[m+1], (n : ℕ) => by
rw [zpow_ofNat, zpow_negSucc, ← inv_pow, ← pow_mul, negSucc_mul_ofNat, zpow_neg, inv_pow,
inv_inj, ← zpow_ofNat]
| -[m+1], -[n+1] => by
rw [zpow_negSucc, zpow_negSucc, negSucc_mul_negSucc, inv_pow, inv_inv, ← pow_mul, ←
zpow_ofNat]
rfl
#align zpow_mul zpow_mul
#align mul_zsmul' mul_zsmul'

@[to_additive mul_zsmul]
lemma zpow_mul' (a : α) (m n : ℤ) : a ^ (m * n) = (a ^ n) ^ m := by rw [Int.mul_comm, zpow_mul]
#align zpow_mul' zpow_mul'
#align mul_zsmul mul_zsmul

set_option linter.deprecated false

@[to_additive bit0_zsmul]
lemma zpow_bit0 (a : α) (n : ℤ) : a ^ bit0 n = a ^ n * a ^ n := by
rw [bit0, ← Int.two_mul, zpow_mul', ← pow_two, ← zpow_coe_nat]; norm_cast
#align zpow_bit0 zpow_bit0
#align bit0_zsmul bit0_zsmul

@[to_additive bit0_zsmul']
theorem zpow_bit0' (a : α) (n : ℤ) : a ^ bit0 n = (a * a) ^ n :=
(zpow_bit0 a n).trans ((Commute.refl a).mul_zpow n).symm
#align zpow_bit0' zpow_bit0'
#align bit0_zsmul' bit0_zsmul'

end DivisionMonoid

section DivisionCommMonoid
Expand Down Expand Up @@ -381,6 +422,106 @@ theorem inv_pow_sub (a : G) {m n : ℕ} (h : n ≤ m) : a⁻¹ ^ (m - n) = (a ^
#align inv_pow_sub inv_pow_sub
#align sub_nsmul_neg sub_nsmul_neg

@[to_additive add_one_zsmul]
lemma zpow_add_one (a : G) : ∀ n : ℤ, a ^ (n + 1) = a ^ n * a
| (n : ℕ) => by simp only [← Int.ofNat_succ, zpow_ofNat, pow_succ']
| -[0+1] => by erw [zpow_zero, zpow_negSucc, pow_one, mul_left_inv]
| -[n + 1+1] => by
rw [zpow_negSucc, pow_succ, mul_inv_rev, inv_mul_cancel_right]
rw [Int.negSucc_eq, Int.neg_add, Int.neg_add_cancel_right]
exact zpow_negSucc _ _
#align zpow_add_one zpow_add_one
#align add_one_zsmul add_one_zsmul

@[to_additive sub_one_zsmul]
lemma zpow_sub_one (a : G) (n : ℤ) : a ^ (n - 1) = a ^ n * a⁻¹ :=
calc
a ^ (n - 1) = a ^ (n - 1) * a * a⁻¹ := (mul_inv_cancel_right _ _).symm
_ = a ^ n * a⁻¹ := by rw [← zpow_add_one, Int.sub_add_cancel]
#align zpow_sub_one zpow_sub_one
#align sub_one_zsmul sub_one_zsmul

@[to_additive add_zsmul]
lemma zpow_add (a : G) (m n : ℤ) : a ^ (m + n) = a ^ m * a ^ n := by
induction n using Int.induction_on with
| hz => simp
| hp n ihn => simp only [← Int.add_assoc, zpow_add_one, ihn, mul_assoc]
| hn n ihn => rw [zpow_sub_one, ← mul_assoc, ← ihn, ← zpow_sub_one, Int.add_sub_assoc]
#align zpow_add zpow_add
#align add_zsmul add_zsmul

@[to_additive one_add_zsmul]
lemma zpow_one_add (a : G) (n : ℤ) : a ^ (1 + n) = a * a ^ n := by rw [zpow_add, zpow_one]
#align zpow_one_add zpow_one_add
#align one_add_zsmul one_add_zsmul

@[to_additive add_zsmul_self]
lemma mul_self_zpow (a : G) (n : ℤ) : a * a ^ n = a ^ (n + 1) := by
rw [Int.add_comm, zpow_add, zpow_one]
#align mul_self_zpow mul_self_zpow
#align add_zsmul_self add_zsmul_self

@[to_additive add_self_zsmul]
lemma mul_zpow_self (a : G) (n : ℤ) : a ^ n * a = a ^ (n + 1) := (zpow_add_one ..).symm
#align mul_zpow_self mul_zpow_self
#align add_self_zsmul add_self_zsmul

@[to_additive sub_zsmul] lemma zpow_sub (a : G) (m n : ℤ) : a ^ (m - n) = a ^ m * (a ^ n)⁻¹ := by
rw [Int.sub_eq_add_neg, zpow_add, zpow_neg]
#align zpow_sub zpow_sub
#align sub_zsmul sub_zsmul

@[to_additive] lemma zpow_mul_comm (a : G) (m n : ℤ) : a ^ m * a ^ n = a ^ n * a ^ m := by
rw [← zpow_add, Int.add_comm, zpow_add]
#align zpow_mul_comm zpow_mul_comm
#align zsmul_add_comm zsmul_add_comm

section bit1

set_option linter.deprecated false

@[to_additive bit1_zsmul]
lemma zpow_bit1 (a : G) (n : ℤ) : a ^ bit1 n = a ^ n * a ^ n * a := by
rw [bit1, zpow_add, zpow_bit0, zpow_one]
#align zpow_bit1 zpow_bit1
#align bit1_zsmul bit1_zsmul

end bit1

/-- To show a property of all powers of `g` it suffices to show it is closed under multiplication
by `g` and `g⁻¹` on the left. For subgroups generated by more than one element, see
`Subgroup.closure_induction_left`. -/
@[to_additive "To show a property of all multiples of `g` it suffices to show it is closed under
addition by `g` and `-g` on the left. For additive subgroups generated by more than one element, see
`AddSubgroup.closure_induction_left`."]
lemma zpow_induction_left {g : G} {P : G → Prop} (h_one : P (1 : G))
(h_mul : ∀ a, P a → P (g * a)) (h_inv : ∀ a, P a → P (g⁻¹ * a)) (n : ℤ) : P (g ^ n) := by
induction' n using Int.induction_on with n ih n ih
· rwa [zpow_zero]
· rw [Int.add_comm, zpow_add, zpow_one]
exact h_mul _ ih
· rw [Int.sub_eq_add_neg, Int.add_comm, zpow_add, zpow_neg_one]
exact h_inv _ ih
#align zpow_induction_left zpow_induction_left
#align zsmul_induction_left zsmul_induction_left

/-- To show a property of all powers of `g` it suffices to show it is closed under multiplication
by `g` and `g⁻¹` on the right. For subgroups generated by more than one element, see
`Subgroup.closure_induction_right`. -/
@[to_additive "To show a property of all multiples of `g` it suffices to show it is closed under
addition by `g` and `-g` on the right. For additive subgroups generated by more than one element,
see `AddSubgroup.closure_induction_right`."]
lemma zpow_induction_right {g : G} {P : G → Prop} (h_one : P (1 : G))
(h_mul : ∀ a, P a → P (a * g)) (h_inv : ∀ a, P a → P (a * g⁻¹)) (n : ℤ) : P (g ^ n) := by
induction' n using Int.induction_on with n ih n ih
· rwa [zpow_zero]
· rw [zpow_add_one]
exact h_mul _ ih
· rw [zpow_sub_one]
exact h_inv _ ih
#align zpow_induction_right zpow_induction_right
#align zsmul_induction_right zsmul_induction_right

end Group

@[to_additive (attr := simp)]
Expand Down
4 changes: 3 additions & 1 deletion Mathlib/Algebra/GroupPower/IterateHom.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,9 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import Mathlib.Algebra.GroupPower.Lemmas
import Mathlib.Algebra.Ring.Hom.Defs
import Mathlib.Data.Int.Basic
import Mathlib.Data.Nat.Basic
import Mathlib.GroupTheory.GroupAction.Opposite

#align_import algebra.hom.iterate from "leanprover-community/mathlib"@"792a2a264169d64986541c6f8f7e3bbb6acb6295"
Expand Down
Loading

0 comments on commit cac9e9b

Please sign in to comment.