Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: the Faa di Bruno formula #17400

Closed
wants to merge 8 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
316 changes: 306 additions & 10 deletions Mathlib/Analysis/Calculus/ContDiff/FaaDiBruno.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,9 @@ Copyright (c) 2024 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import Mathlib.Data.Finite.Card
import Mathlib.Analysis.Analytic.Within
import Mathlib.Analysis.Calculus.FDeriv.Analytic
import Mathlib.Analysis.Calculus.ContDiff.FTaylorSeries

/-!
# Faa di Bruno formula
Expand All @@ -12,7 +14,7 @@ The Faa di Bruno formula gives the iterated derivative of `g ∘ f` in terms of
`g` and `f`. It is expressed in terms of partitions `I` of `{0, ..., n-1}`. For such a
partition, denote by `k` its number of parts, write the parts as `I₀, ..., Iₖ₋₁` ordered so
that `max I₀ < ... < max Iₖ₋₁`, and let `iₘ` be the number of elements of `Iₘ`. Then
`D^n (g ∘ f) (x) (v_0, ..., v_{n-1}) =
`D^n (g ∘ f) (x) (v₀, ..., vₙ₋₁) =
∑_{I partition of {0, ..., n-1}}
D^k g (f x) (D^{i₀} f (x) (v_{I₀}), ..., D^{iₖ₋₁} f (x) (v_{Iₖ₋₁}))`
where by `v_{Iₘ}` we mean the vectors `vᵢ` with indices in `Iₘ`, i.e., the composition of `v`
Expand Down Expand Up @@ -70,18 +72,18 @@ that contains it), and we show that these processes are inverse to each other, y
equivalence between `(c : OrderedFinpartition n) × Option (Fin c.length)`
and `OrderedFinpartition (n + 1)`. This equivalence shows up prominently in the inductive proof
of Faa di Bruno formula to identify the sums that show up.

## Current state

For now, the file only contains the combinatorial construction, i.e., the definition of
`OrderedFinpartition n` and the equivalence between
`(c : OrderedFinpartition n) × Option (Fin c.length)` and `OrderedFinpartition (n + 1)`.
The application to the proof of the Faa di Bruno formula will be PRed in a second step.
-/

noncomputable section

open Set Fin Function
open Set Fin Filter Function

variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
{G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
{s : Set E} {t : Set F}
{q : F → FormalMultilinearSeries 𝕜 F G} {p : E → FormalMultilinearSeries 𝕜 E F}

/-- A partition of `Fin n` into finitely many nonempty subsets, given by the increasing
parameterization of these subsets. We order the subsets by increasing greatest element.
Expand Down Expand Up @@ -683,4 +685,298 @@ def extendEquiv (n : ℕ) :
rfl
· simp [hi]

/-! ### Applying ordered finpartitions to multilinear maps -/

/-- Given a formal multilinear series `p`, an ordered partition `c` of `n` and the index `i` of a
block of `c`, we may define a function on `Fin n → E` by picking the variables in the `i`-th block
of `n`, and applying the corresponding coefficient of `p` to these variables. This function is
called `p.applyOrderedFinpartition c v i` for `v : Fin n → E` and `i : Fin c.k`. -/
def applyOrderedFinpartition (p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F) :
(Fin n → E) → Fin c.length → F :=
fun v m ↦ p m (v ∘ c.emb m)

lemma applyOrderedFinpartition_apply (p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F)
(v : Fin n → E) :
c.applyOrderedFinpartition p v = (fun m ↦ p m (v ∘ c.emb m)) := rfl

/-- Technical lemma stating how `c.applyOrderedFinpartition` commutes with updating variables. This
will be the key point to show that functions constructed from `applyOrderedFinpartition` retain
multilinearity. -/
theorem applyOrderedFinpartition_update_right
(p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F)
(j : Fin n) (v : Fin n → E) (z : E) :
c.applyOrderedFinpartition p (update v j z) =
update (c.applyOrderedFinpartition p v) (c.index j)
(p (c.index j)
(Function.update (v ∘ c.emb (c.index j)) (c.invEmbedding j) z)) := by
ext m
by_cases h : m = c.index j
· rw [h]
simp only [applyOrderedFinpartition, update_same]
congr
rw [← Function.update_comp_eq_of_injective]
· simp
· exact (c.emb_strictMono (c.index j)).injective
· simp only [applyOrderedFinpartition, ne_eq, h, not_false_eq_true,
update_noteq]
congr
apply Function.update_comp_eq_of_not_mem_range
have A : Disjoint (range (c.emb m)) (range (c.emb (c.index j))) :=
c.disjoint (mem_univ m) (mem_univ (c.index j)) h
have : j ∈ range (c.emb (c.index j)) := mem_range.2 ⟨c.invEmbedding j, by simp⟩
exact Set.disjoint_right.1 A this

theorem applyOrderedFinpartition_update_left (p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F)
(m : Fin c.length) (v : Fin n → E) (q : E[×c.partSize m]→L[𝕜] F) :
c.applyOrderedFinpartition (update p m q) v
= update (c.applyOrderedFinpartition p v) m (q (v ∘ c.emb m)) := by
ext d
by_cases h : d = m
· rw [h]
simp [applyOrderedFinpartition]
· simp [h, applyOrderedFinpartition]

/-- Given a an ordered finite partition `c` of `n`, a continuous multilinear map `f` in `c.length`
variables, and for each `m` a continuous multilinear map `p m` in `c.partSize m` variables,
one can form a continuous multilinear map in `n`
variables by applying `p m` to each part of the partition, and then
applying `f` to the resulting vector. It is called `c.compAlongOrderedFinpartition f p`. -/
def compAlongOrderedFinpartition
(f : ContinuousMultilinearMap 𝕜 (fun _i : Fin c.length ↦ F) G)
(p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F) :
E[×n]→L[𝕜] G where
toFun v := f (c.applyOrderedFinpartition p v)
map_update_add' v i x y := by
cases Subsingleton.elim ‹_› (instDecidableEqFin _)
simp only [applyOrderedFinpartition_update_right, ContinuousMultilinearMap.map_update_add]
map_update_smul' v i c x := by
cases Subsingleton.elim ‹_› (instDecidableEqFin _)
simp only [applyOrderedFinpartition_update_right, ContinuousMultilinearMap.map_update_smul]
cont := by
apply f.cont.comp
change Continuous (fun v m ↦ p m (v ∘ c.emb m))
fun_prop

@[simp] lemma compAlongOrderFinpartition_apply
(f : ContinuousMultilinearMap 𝕜 (fun _i : Fin c.length ↦ F) G)
(p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F) (v : Fin n → E) :
c.compAlongOrderedFinpartition f p v = f (c.applyOrderedFinpartition p v) := rfl

/-- Bundled version of `compAlongOrderedFinpartition`, depending linearly on `f`
and multilinearly on `p`.-/
def compAlongOrderedFinpartitionₗ :
(ContinuousMultilinearMap 𝕜 (fun _i : Fin c.length ↦ F) G) →ₗ[𝕜]
MultilinearMap 𝕜 (fun i : Fin c.length ↦ (E[×c.partSize i]→L[𝕜] F)) (E[×n]→L[𝕜] G) where
toFun f :=
{ toFun := fun p ↦ c.compAlongOrderedFinpartition f p
map_update_add' := by
intro inst p m q q'
cases Subsingleton.elim ‹_› (instDecidableEqFin _)
ext v
simp [applyOrderedFinpartition_update_left]
map_update_smul' := by
intro inst p m a q
cases Subsingleton.elim ‹_› (instDecidableEqFin _)
ext v
simp [applyOrderedFinpartition_update_left] }
map_add' _ _ := rfl
map_smul' _ _ := rfl

variable (𝕜 E F G) in
/-- Bundled version of `compAlongOrderedFinpartition`, depending continuously linearly on `f`
and continuously multilinearly on `p`.-/
noncomputable def compAlongOrderedFinpartitionL :
(ContinuousMultilinearMap 𝕜 (fun _i : Fin c.length ↦ F) G) →L[𝕜]
ContinuousMultilinearMap 𝕜 (fun i : Fin c.length ↦ (E[×c.partSize i]→L[𝕜] F))
(E[×n]→L[𝕜] G) := by
refine MultilinearMap.mkContinuousLinear c.compAlongOrderedFinpartitionₗ 1 (fun f p ↦ ?_)
simp only [one_mul]
change ‖c.compAlongOrderedFinpartition f p‖ ≤ _
apply ContinuousMultilinearMap.opNorm_le_bound _ (by positivity) (fun v ↦ ?_)
simp only [compAlongOrderFinpartition_apply]
apply (f.le_opNorm _).trans
rw [mul_assoc, ← c.prod_sigma_eq_prod, ← Finset.prod_mul_distrib]
gcongr with m _
exact (p m).le_opNorm _

@[simp] lemma compAlongOrderedFinpartitionL_apply
(f : ContinuousMultilinearMap 𝕜 (fun _i : Fin c.length ↦ F) G)
(p : ∀ (i : Fin c.length), E[×c.partSize i]→L[𝕜] F) :
c.compAlongOrderedFinpartitionL 𝕜 E F G f p = c.compAlongOrderedFinpartition f p := rfl

end OrderedFinpartition

/-! ### The Faa di Bruno formula -/

namespace FormalMultilinearSeries

/-- Given two formal multilinear series `q` and `p` and a composition `c` of `n`, one may
form a continuous multilinear map in `n` variables by applying the right coefficient of `p` to each
block of the composition, and then applying `q c.length` to the resulting vector. It is
called `q.compAlongComposition p c`. -/
def compAlongOrderedFinpartition {n : ℕ} (q : FormalMultilinearSeries 𝕜 F G)
(p : FormalMultilinearSeries 𝕜 E F) (c : OrderedFinpartition n) :
ContinuousMultilinearMap 𝕜 (fun _i : Fin n ↦ E) G :=
c.compAlongOrderedFinpartition (q c.length) (fun m ↦ p (c.partSize m))

@[simp]
theorem compAlongOrderedFinpartition_apply {n : ℕ} (q : FormalMultilinearSeries 𝕜 F G)
(p : FormalMultilinearSeries 𝕜 E F) (c : OrderedFinpartition n) (v : Fin n → E) :
(q.compAlongOrderedFinpartition p c) v =
q c.length (c.applyOrderedFinpartition (fun m ↦ (p (c.partSize m))) v) :=
rfl

/-- Taylor formal composition of two formal multilinear series. The `n`-th coefficient in the
composition is defined to be the sum of `q.compAlongOrderedFinpartition p c` over all
ordered partitions of `n`.
In other words, this term (as a multilinear function applied to `v₀, ..., vₙ₋₁`) is
`∑'_{k} ∑'_{I₀ ⊔ ... ⊔ Iₖ₋₁ = {0, ..., n-1}} qₖ (p_{i₀} (...), ..., p_{iₖ₋₁} (...))`, where
`iₘ` is the size of `Iₘ` and one puts all variables of `Iₘ` as arguments to `p_{iₘ}`, in
increasing order. The sets `I₀, ..., Iₖ₋₁` are ordered so that `max I₀ < max I₁ < ... < max Iₖ₋₁`.

This definition is chosen so that the `n`-th derivative of `g ∘ f` is the Taylor composition of
the iterated derivatives of `g` and of `f`.

Not to be confused with another notion of composition for formal multilinear series, called just
`FormalMultilinearSeries.comp`, appearing in the composition of analytic functions.
-/
protected noncomputable def taylorComp
(q : FormalMultilinearSeries 𝕜 F G) (p : FormalMultilinearSeries 𝕜 E F) :
FormalMultilinearSeries 𝕜 E G :=
fun n ↦ ∑ c : OrderedFinpartition n, q.compAlongOrderedFinpartition p c

end FormalMultilinearSeries

theorem analyticOn_taylorComp
(hq : ∀ (n : ℕ), AnalyticOn 𝕜 (fun x ↦ q x n) t)
(hp : ∀ n, AnalyticOn 𝕜 (fun x ↦ p x n) s) {f : E → F}
(hf : AnalyticOn 𝕜 f s) (h : MapsTo f s t) (n : ℕ) :
AnalyticOn 𝕜 (fun x ↦ (q (f x)).taylorComp (p x) n) s := by
apply Finset.analyticOn_sum _ (fun c _ ↦ ?_)
let B := c.compAlongOrderedFinpartitionL 𝕜 E F G
change AnalyticOn 𝕜
((fun p ↦ B p.1 p.2) ∘ (fun x ↦ (q (f x) c.length, fun m ↦ p x (c.partSize m)))) s
apply B.analyticOnNhd_uncurry_of_multilinear.comp_analyticOn ?_ (mapsTo_univ _ _)
apply AnalyticOn.prod
· exact (hq c.length).comp hf h
· exact AnalyticOn.pi (fun i ↦ hp _)

open OrderedFinpartition

/-- Composing two formal multilinear series `q` and `p` along an ordered partition extended by a
new atom to the left corresponds to applying `p 1` on the first coordinates, and the initial
ordered partition on the other coordinates.
This is one of the terms that appears when differentiating in the Faa di Bruno
formula, going from step `m` to step `m + 1`. -/
private lemma faaDiBruno_aux1 {m : ℕ} (q : FormalMultilinearSeries 𝕜 F G)
(p : FormalMultilinearSeries 𝕜 E F) (c : OrderedFinpartition m) :
(q.compAlongOrderedFinpartition p (c.extend none)).curryLeft =
((c.compAlongOrderedFinpartitionL 𝕜 E F G).flipMultilinear fun i ↦ p (c.partSize i)).comp
((q (c.length + 1)).curryLeft.comp ((continuousMultilinearCurryFin1 𝕜 E F) (p 1))) := by
ext e v
simp only [Nat.succ_eq_add_one, OrderedFinpartition.extend, extendLeft,
ContinuousMultilinearMap.curryLeft_apply,
FormalMultilinearSeries.compAlongOrderedFinpartition_apply, applyOrderedFinpartition_apply,
ContinuousLinearMap.coe_comp', comp_apply, continuousMultilinearCurryFin1_apply,
Matrix.zero_empty, ContinuousLinearMap.flipMultilinear_apply_apply,
compAlongOrderedFinpartitionL_apply, compAlongOrderFinpartition_apply]
congr
ext j
exact Fin.cases rfl (fun i ↦ rfl) j

/-- Composing a formal multilinear series with an ordered partition extended by adding a left point
to an already existing atom of index `i` corresponds to updating the `i`th block,
using `p (c.partSize i + 1)` instead of `p (c.partSize i)` there.
This is one of the terms that appears when differentiating in the Faa di Bruno
formula, going from step `m` to step `m + 1`. -/
private lemma faaDiBruno_aux2 {m : ℕ} (q : FormalMultilinearSeries 𝕜 F G)
(p : FormalMultilinearSeries 𝕜 E F) (c : OrderedFinpartition m) (i : Fin c.length) :
(q.compAlongOrderedFinpartition p (c.extend (some i))).curryLeft =
((c.compAlongOrderedFinpartitionL 𝕜 E F G (q c.length)).toContinuousLinearMap
(fun i ↦ p (c.partSize i)) i).comp (p (c.partSize i + 1)).curryLeft := by
ext e v
simp only [Nat.succ_eq_add_one, OrderedFinpartition.extend, extendMiddle,
ContinuousMultilinearMap.curryLeft_apply,
FormalMultilinearSeries.compAlongOrderedFinpartition_apply, ContinuousLinearMap.coe_comp',
comp_apply, ContinuousMultilinearMap.toContinuousLinearMap_toFun,
compAlongOrderedFinpartitionL_apply, compAlongOrderFinpartition_apply,
applyOrderedFinpartition_apply]
congr
ext j
rcases eq_or_ne j i with rfl | hij
· simp only [↓reduceDIte, update_same, ContinuousMultilinearMap.curryLeft_apply,
Nat.succ_eq_add_one]
apply FormalMultilinearSeries.congr _ (by simp)
intro a ha h'a
match a with
| 0 => simp
| a + 1 => simp [cons]
· simp only [hij, ↓reduceDIte, ne_eq, not_false_eq_true, update_noteq]
apply FormalMultilinearSeries.congr _ (by simp [hij])
simp

/-- *Faa di Bruno* formula: If two functions `g` and `f` have Taylor series up to `n` given by
`q` and `p`, then `g ∘ f` also has a Taylor series, given by `q.taylorComp p`. -/
theorem HasFTaylorSeriesUpToOn.comp {n : ℕ∞} {g : F → G} {f : E → F}
(hg : HasFTaylorSeriesUpToOn n g q t) (hf : HasFTaylorSeriesUpToOn n f p s) (h : MapsTo f s t) :
HasFTaylorSeriesUpToOn n (g ∘ f) (fun x ↦ (q (f x)).taylorComp (p x)) s := by
/- One has to check that the `m+1`-th term is the derivative of the `m`-th term. The `m`-th term
is a sum, that one can differentiate term by term. Each term is a linear map into continuous
multilinear maps, applied to parts of `p` and `q`. One knows how to differentiate such a map,
thanks to `HasFDerivWithinAt.linear_multilinear_comp`. The terms that show up are matched, using
`faaDiBruno_aux1` and `faaDiBruno_aux2`, with terms of the same form at order `m+1`. Then, one
needs to check that one gets each term once and exactly once, which is given by the bijection
`OrderedFinpartition.extendEquiv m`. -/
classical
constructor
· intro x hx
simp [FormalMultilinearSeries.taylorComp, default, HasFTaylorSeriesUpToOn.zero_eq' hg (h hx)]
· intro m hm x hx
have A (c : OrderedFinpartition m) :
HasFDerivWithinAt (fun x ↦ (q (f x)).compAlongOrderedFinpartition (p x) c)
(∑ i : Option (Fin c.length),
((q (f x)).compAlongOrderedFinpartition (p x) (c.extend i)).curryLeft) s x := by
let B := c.compAlongOrderedFinpartitionL 𝕜 E F G
change HasFDerivWithinAt (fun y ↦ B (q (f y) c.length) (fun i ↦ p y (c.partSize i)))
(∑ i : Option (Fin c.length),
((q (f x)).compAlongOrderedFinpartition (p x) (c.extend i)).curryLeft) s x
have cm : (c.length : ℕ∞) ≤ m := by exact_mod_cast OrderedFinpartition.length_le c
have cp i : (c.partSize i : ℕ∞) ≤ m := by
exact_mod_cast OrderedFinpartition.partSize_le c i
have I i : HasFDerivWithinAt (fun x ↦ p x (c.partSize i))
(p x (c.partSize i).succ).curryLeft s x :=
hf.fderivWithin (c.partSize i) ((cp i).trans_lt hm) x hx
have J : HasFDerivWithinAt (fun x ↦ q x c.length) (q (f x) c.length.succ).curryLeft
t (f x) := hg.fderivWithin c.length (cm.trans_lt hm) (f x) (h hx)
have K : HasFDerivWithinAt f ((continuousMultilinearCurryFin1 𝕜 E F) (p x 1)) s x :=
hf.hasFDerivWithinAt (le_trans le_add_self (Order.add_one_le_of_lt hm)) hx
convert HasFDerivWithinAt.linear_multilinear_comp (J.comp x K h) I B
simp only [Nat.succ_eq_add_one, Fintype.sum_option, comp_apply, faaDiBruno_aux1,
faaDiBruno_aux2]
have B : HasFDerivWithinAt (fun x ↦ (q (f x)).taylorComp (p x) m)
(∑ c : OrderedFinpartition m, ∑ i : Option (Fin c.length),
((q (f x)).compAlongOrderedFinpartition (p x) (c.extend i)).curryLeft) s x :=
HasFDerivWithinAt.sum (fun c _ ↦ A c)
suffices ∑ c : OrderedFinpartition m, ∑ i : Option (Fin c.length),
((q (f x)).compAlongOrderedFinpartition (p x) (c.extend i)) =
(q (f x)).taylorComp (p x) (m + 1) by
rw [← this]
convert B
ext v
simp only [Nat.succ_eq_add_one, Fintype.sum_option, ContinuousMultilinearMap.curryLeft_apply,
ContinuousMultilinearMap.sum_apply, ContinuousMultilinearMap.add_apply,
FormalMultilinearSeries.compAlongOrderedFinpartition_apply, ContinuousLinearMap.coe_sum',
Finset.sum_apply, ContinuousLinearMap.add_apply]
rw [Finset.sum_sigma']
exact Fintype.sum_equiv (OrderedFinpartition.extendEquiv m) _ _ (fun p ↦ rfl)
· intro m hm
apply continuousOn_finset_sum _ (fun c _ ↦ ?_)
let B := c.compAlongOrderedFinpartitionL 𝕜 E F G
change ContinuousOn
((fun p ↦ B p.1 p.2) ∘ (fun x ↦ (q (f x) c.length, fun i ↦ p x (c.partSize i)))) s
apply B.continuous_uncurry_of_multilinear.comp_continuousOn (ContinuousOn.prod ?_ ?_)
· have : (c.length : ℕ∞) ≤ m := by exact_mod_cast OrderedFinpartition.length_le c
exact (hg.cont c.length (this.trans hm)).comp hf.continuousOn h
· apply continuousOn_pi.2 (fun i ↦ ?_)
have : (c.partSize i : ℕ∞) ≤ m := by exact_mod_cast OrderedFinpartition.partSize_le c i
exact hf.cont _ (this.trans hm)