-
Notifications
You must be signed in to change notification settings - Fork 356
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat(CategoryTheory): comma categories are accessible #20267
base: master
Are you sure you want to change the base?
Conversation
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
…into category-theory-accessible
…into category-theory-accessible
…into category-theory-accessible
… category-theory-arrow-cardinal
… category-theory-accessible2
… category-theory-accessible2
… category-theory-accessible2
… category-theory-accessible2
… category-theory-accessible2
… category-theory-accessible2
…o category-theory-accessible3
… category-theory-accessible2
…o category-theory-accessible3
…o category-theory-accessible3
PR summary 8b9474ef92
|
Files | Import difference |
---|---|
Mathlib.SetTheory.Cardinal.HasCardinalLT (new file) |
777 |
Mathlib.CategoryTheory.Presentable.ParallelMaps (new file) |
805 |
Mathlib.CategoryTheory.Comma.CardinalArrow (new file) |
826 |
Mathlib.CategoryTheory.Presentable.IsCardinalFiltered (new file) |
854 |
Mathlib.CategoryTheory.Presentable.Basic (new file) |
865 |
Mathlib.CategoryTheory.Presentable.Limits (new file) |
871 |
Mathlib.CategoryTheory.Presentable.CardinalFilteredPresentation (new file) |
872 |
Mathlib.CategoryTheory.Presentable.LocallyPresentable (new file) |
873 |
Mathlib.CategoryTheory.Presentable.Comma (new file) |
900 |
Declarations diff
+ AreCardinalFilteredGenerators
+ Arrow.discreteEquiv
+ Arrow.equivSigma
+ Arrow.ext
+ Arrow.finite
+ Arrow.finite_iff
+ Arrow.opEquiv
+ Arrow.shrinkEquiv
+ Arrow.shrinkHomsEquiv
+ CardinalFilteredPresentation
+ HasCardinalFilteredColimits
+ HasCardinalFilteredGenerators
+ HasCardinalLT
+ Hom.comp
+ Index
+ IsAccessible
+ IsAccessibleCategory
+ IsAccessibleCategory.exists_cardinal
+ IsCardinalAccessible
+ IsCardinalAccessibleCategory
+ IsCardinalFiltered
+ IsCardinalLocallyPresentable
+ IsCardinalPresentable
+ IsLocallyPresentable
+ IsLocallyPresentable.exists_cardinal
+ IsPresentable
+ ParallelMaps
+ arrowEquiv
+ cardinalFilteredPresentation
+ cardinalFilteredPresentation_exists_f_obj_iso
+ coeq
+ coeqHom
+ coeq_condition
+ comp_m₁
+ comp_m₂
+ exists_generators
+ exists_presentation_obj_iso
+ exists_regular_cardinal
+ exists_regular_cardinal'
+ functor
+ hasCardinalFilteredColimits
+ hasCardinalFilteredGenerators
+ hasCardinalLT
+ hasCardinalLT_aleph0_iff
+ hasCardinalLT_arrow_discrete_iff
+ hasCardinalLT_arrow_shrinkHoms_iff
+ hasCardinalLT_arrow_shrink_iff
+ hasCardinalLT_iff_cardinal_mk_lt
+ hasCardinalLT_iff_of_equiv
+ hasCardinalLT_of_hasCardinalLT_arrow
+ hasCardinalLT_option_iff
+ hasCardinal_arrow_op_iff
+ id_m₁
+ id_m₂
+ injective
+ instance (C : Type u) [Category.{v} C] [Small.{w'} C] [LocallySmall.{w} C] :
+ instance (j : (h.presentation X).J) :
+ instance (j : (h.presentation X).J) : IsPresentable.{w} ((h.presentation X).F.obj j)
+ instance : (Comma.fst F₁ F₂).IsCardinalAccessible κ
+ instance : (Comma.snd F₁ F₂).IsCardinalAccessible κ
+ instance : (Index.π₁ f p₁ p₂).Final := sorry
+ instance : (Index.π₂ f p₁ p₂).Final := sorry
+ instance : Category (Index f p₁ p₂)
+ instance : Category (ParallelMaps T)
+ instance : Fact Cardinal.aleph0.IsRegular
+ instance : IsCardinalFiltered (Index f p₁ p₂) κ := sorry
+ instance : IsFiltered (Index f p₁ p₂) := by
+ instance : PreservesColimit F (uliftFunctor.{w, w'})
+ instance : PreservesColimitsOfShape J (uliftFunctor.{w, w'})
+ instance : PreservesColimitsOfSize.{v₁, u₁} (uliftFunctor.{w, w'})
+ instance : ReflectsColimit F (uliftFunctor.{w, w'})
+ instance : ReflectsColimitsOfShape J (uliftFunctor.{w, w'})
+ instance : ReflectsColimitsOfSize.{v₁, u₁} (uliftFunctor.{w, w'})
+ instance [HasColimitsOfSize.{w, w} C] : HasCardinalFilteredColimits.{w} C κ
+ instance [IsAccessibleCategory.{w} C] (X : C) : IsPresentable.{w} X := by
+ instance [IsCardinalLocallyPresentable C κ] : IsCardinalAccessibleCategory C κ
+ instance [LocallySmall.{w} D] : EssentiallySmall.{w} (Index f p₁ p₂) := by
+ instance [LocallySmall.{w} D] : Small.{w} (Index f p₁ p₂) := by
+ instance [h : IsLocallyPresentable.{w} C] : IsAccessibleCategory.{w} C
+ isAccessible_of_isCardinalAccessible
+ isCardinalAccessibleCategory
+ isCardinalAccessible_of_isLimit
+ isCardinalAccessible_of_iso
+ isCardinalAccessible_of_le
+ isCardinalFiltered_aleph0_iff
+ isCardinalFiltered_preorder
+ isCardinalLocallyPresentable
+ isCardinalPresentable_iff_of_isEquivalence
+ isCardinalPresentable_mk
+ isCardinalPresentable_of_equivalence
+ isCardinalPresentable_of_isColimit
+ isCardinalPresentable_of_isColimit'
+ isCardinalPresentable_of_isEquivalence
+ isCardinalPresentable_of_iso
+ isCardinalPresentable_of_le
+ isCardinalPresentable_pt
+ isCardinalPresentable_shrinkHoms_iff
+ isColimitCocone
+ isColimitEquiv
+ isColimitMapCocone
+ isColimitOf'
+ isColimit_cocone_iff
+ isColimit_eq_iff'
+ isFiltered
+ isFiltered_of_isCardinalDirected
+ isPresentable
+ isPresentable_of_isCardinalPresentable
+ locallySmall_of_small_arrow
+ max
+ mkFunctor
+ ofIsColimit
+ ofIsColimitOfEssentiallySmall
+ ofIsColimitOfEssentiallySmall_exists_f_obj_iso
+ of_equivalence
+ of_injective
+ of_surjective
+ presentable
+ presentation
+ preservesColimitsOfShape_fst
+ preservesColimitsOfShape_of_isCardinalAccessible
+ preservesColimitsOfShape_of_isCardinalAccessible_of_essentiallySmall
+ preservesColimitsOfShape_of_isCardinalPresentable
+ preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall
+ preservesColimitsOfShape_snd
+ quotEquiv
+ quotEquiv_comm
+ small
+ small_of_small_arrow
+ surjective
+ toCoeq
+ toMax
+ π₁
+ π₂
++ Hom
++ cocone
++ of_le
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh
contains some details about this script.
Increase in tech debt: (relative, absolute) = (2.00, 0.00)
Current number | Change | Type |
---|---|---|
1516 | 2 | erw |
Current commit 8b9474ef92
Reference commit d5e4a9182e
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relative
value is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolute
value is therelative
value divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
Arrow A
is finite iffA
is a finite category #19945κ
-filtered categories #20005