Skip to content

Commit

Permalink
chore: upstream Nat.binaryRec
Browse files Browse the repository at this point in the history
  • Loading branch information
FR-vdash-bot committed Apr 25, 2024
1 parent 6fce8f7 commit 14b90fa
Show file tree
Hide file tree
Showing 7 changed files with 238 additions and 113 deletions.
5 changes: 5 additions & 0 deletions src/Init/Core.lean
Original file line number Diff line number Diff line change
Expand Up @@ -680,6 +680,11 @@ theorem Eq.substr {α : Sort u} {p : α → Prop} {a b : α} (h₁ : b = a) (h
theorem cast_eq {α : Sort u} (h : α = α) (a : α) : cast h a = a :=
rfl

theorem eqRec_eq_cast {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _}
(x : motive a (rfl : a = a)) {a' : α} (e : a = a') :
@Eq.rec α a motive x a' e = cast (e ▸ rfl) x := by
subst e; rfl

/--
`a ≠ b`, or `Ne a b` is defined as `¬ (a = b)` or `a = b → False`,
and asserts that `a` and `b` are not equal.
Expand Down
4 changes: 1 addition & 3 deletions src/Init/Data/BitVec/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -137,8 +137,7 @@ theorem msb_eq_getLsb_last (x : BitVec w) :
x.getLsb (w-1) = decide (2 ^ (w-1) ≤ x.toNat) := by
rcases w with rfl | w
· simp
· simp only [Nat.zero_lt_succ, decide_True, getLsb, Nat.testBit, Nat.succ_sub_succ_eq_sub,
Nat.sub_zero, Nat.and_one_is_mod, Bool.true_and, Nat.shiftRight_eq_div_pow]
· simp only [getLsb, Nat.testBit_to_div_mod, Nat.succ_sub_succ_eq_sub, Nat.sub_zero]
rcases (Nat.lt_or_ge (BitVec.toNat x) (2 ^ w)) with h | h
· simp [Nat.div_eq_of_lt h, h]
· simp only [h]
Expand Down Expand Up @@ -506,7 +505,6 @@ theorem getMsb_rev (x : BitVec w) (i : Fin w) :
have p2 : i ≠ n := by omega
simp [p1, p2]
· simp [i_eq_n, testBit_toNat]
cases b <;> trivial
· have p1 : i ≠ n := by omega
have p2 : i - n ≠ 0 := by omega
simp [p1, p2, Nat.testBit_bool_to_nat]
Expand Down
5 changes: 2 additions & 3 deletions src/Init/Data/Bool.lean
Original file line number Diff line number Diff line change
Expand Up @@ -210,9 +210,6 @@ theorem and_or_inj_left_iff :

/-! ## toNat -/

/-- convert a `Bool` to a `Nat`, `false -> 0`, `true -> 1` -/
def toNat (b:Bool) : Nat := cond b 1 0

@[simp] theorem toNat_false : false.toNat = 0 := rfl

@[simp] theorem toNat_true : true.toNat = 1 := rfl
Expand All @@ -229,6 +226,8 @@ theorem toNat_lt (b : Bool) : b.toNat < 2 :=
cases b <;> simp
@[simp] theorem toNat_eq_one (b : Bool) : b.toNat = 1 ↔ b = true := by
cases b <;> simp
@[simp] theorem toNat_mod_two (b : Bool) : b.toNat % 2 = b.toNat := by
cases b <;> simp

end Bool

Expand Down
106 changes: 105 additions & 1 deletion src/Init/Data/Nat/Bitwise/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,9 @@ import Init.Data.Nat.Basic
import Init.Data.Nat.Div
import Init.Coe

/-- convert a `Bool` to a `Nat`, `false => 0`, `true => 1` -/
def Bool.toNat (b : Bool) : Nat := cond b 1 0

namespace Nat

theorem bitwise_rec_lemma {n : Nat} (hNe : n ≠ 0) : n / 2 < n :=
Expand Down Expand Up @@ -51,13 +54,114 @@ instance : Xor Nat := ⟨Nat.xor⟩
instance : ShiftLeft Nat := ⟨Nat.shiftLeft⟩
instance : ShiftRight Nat := ⟨Nat.shiftRight⟩

theorem shiftLeft_eq (a b : Nat) : a <<< b = a * 2 ^ b :=
match b with
| 0 => (Nat.mul_one _).symm
| b+1 => (shiftLeft_eq _ b).trans <| by
simp [Nat.pow_succ, Nat.mul_assoc, Nat.mul_left_comm, Nat.mul_comm]

@[simp] theorem shiftRight_zero : n >>> 0 = n := rfl

theorem shiftRight_succ (m n) : m >>> (n + 1) = (m >>> n) / 2 := rfl

theorem shiftRight_add (m n : Nat) : ∀ k, m >>> (n + k) = (m >>> n) >>> k
| 0 => rfl
| k + 1 => by simp [← Nat.add_assoc, shiftRight_add _ _ k, shiftRight_succ]

theorem shiftRight_eq_div_pow (m : Nat) : ∀ n, m >>> n = m / 2 ^ n
| 0 => (Nat.div_one _).symm
| k + 1 => by
rw [shiftRight_add, shiftRight_eq_div_pow m k]
simp [Nat.div_div_eq_div_mul, ← Nat.pow_succ, shiftRight_succ]

/-- `bit b` appends the digit `b` to the little end of the binary representation of
its natural number input. -/
def bit (b : Bool) (n : Nat) : Nat :=
cond b (n + n + 1) (n + n)

/-!
### testBit
We define an operation for testing individual bits in the binary representation
of a number.
-/

/-- `testBit m n` returns whether the `(n+1)` least significant bit is `1` or `0`-/
def testBit (m n : Nat) : Bool := (m >>> n) &&& 1 != 0
def testBit (m n : Nat) : Bool := 1 &&& (m >>> n) != 0
-- `1 &&& n` is faster than `n &&& 1` for big `n`. This may change in the future.

theorem bit_val (b n) : bit b n = 2 * n + b.toNat := by
rw [Nat.mul_comm]
induction b with
| false => exact congrArg (· + n) n.zero_add.symm
| true => exact congrArg (· + n + 1) n.zero_add.symm

theorem shiftRight_one (n) : n >>> 1 = n / 2 := rfl

theorem mod_two_eq_zero_or_one (n : Nat) : n % 2 = 0 ∨ n % 2 = 1 :=
match n % 2, @Nat.mod_lt n 2 (by decide) with
| 0, _ => .inl rfl
| 1, _ => .inr rfl

@[simp] theorem one_land_eq_mod_two (n : Nat) : 1 &&& n = n % 2 := by
match Nat.decEq n 0 with
| isTrue n0 => subst n0; decide
| isFalse n0 =>
simp only [HAnd.hAnd, AndOp.and, land]
unfold bitwise
cases mod_two_eq_zero_or_one n with | _ h => simp [n0, h]; rfl

@[simp]
theorem testBit_zero (n : Nat) : testBit n 0 = decide (n % 2 = 1) := by
cases mod_two_eq_zero_or_one n with | _ h => simp [testBit, h]

@[simp] theorem decide_mod_two_eq_one_toNat (n : Nat) : (decide (n % 2 = 1)).toNat = n % 2 := by
cases mod_two_eq_zero_or_one n with | _ h => simp [h]; rfl

theorem testBit_zero_toNat (n : Nat) : (n.testBit 0).toNat = n % 2 := by simp

theorem bit_decomp (n : Nat) : bit (n.testBit 0) (n >>> 1) = n := by
simp [bit_val, shiftRight_one, Nat.div_add_mod]

theorem bit_eq_zero_iff {n : Nat} {b : Bool} : bit b n = 0 ↔ n = 0 ∧ b = false := by
cases n <;> cases b <;> simp [bit, ← Nat.add_assoc]

/-- For a predicate `C : Nat → Sort u`, if instances can be
constructed for natural numbers of the form `bit b n`,
they can be constructed for any given natural number. -/
@[inline]
def bitCasesOn {C : Nat → Sort u} (n) (h : ∀ b n, C (bit b n)) : C n := bit_decomp n ▸ h _ _

/-- A recursion principle for `bit` representations of natural numbers.
For a predicate `C : Nat → Sort u`, if instances can be
constructed for natural numbers of the form `bit b n`,
they can be constructed for all natural numbers. -/
@[elab_as_elim, specialize]
def binaryRec {C : Nat → Sort u} (z : C 0) (f : ∀ b n, C n → C (bit b n)) (n : Nat) : C n :=
if n0 : n = 0 then congrArg C n0 ▸ z -- `congrArg C _` is `rfl` in non-dependent case
else congrArg C n.bit_decomp ▸ f (1 &&& n != 0) (n >>> 1) (binaryRec z f (n >>> 1))
decreasing_by exact bitwise_rec_lemma n0

/-- The same as `binaryRec`, but the induction step can assume that if `n=0`,
the bit being appended is `true`-/
@[elab_as_elim, specialize]
def binaryRec' {C : Nat → Sort u} (z : C 0)
(f : ∀ b n, (n = 0 → b = true) → C n → C (bit b n)) : ∀ n, C n :=
binaryRec z fun b n ih =>
if h : n = 0 → b = true then f b n h ih
else
have : bit b n = 0 := by
rw [bit_eq_zero_iff]
cases n <;> cases b <;> simp at h <;> simp [h]
congrArg C this ▸ z

/-- The same as `binaryRec`, but special casing both 0 and 1 as base cases -/
@[elab_as_elim, specialize]
def binaryRecFromOne {C : Nat → Sort u} (z₀ : C 0) (z₁ : C 1)
(f : ∀ b n, n ≠ 0 → C n → C (bit b n)) : ∀ n, C n :=
binaryRec' z₀ fun b n h ih =>
if h' : n = 0 then by
rw [h', h h']
exact z₁
else f b n h' ih

end Nat
Loading

0 comments on commit 14b90fa

Please sign in to comment.