Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added is_benchmark to logbook #49

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ To download your logbook entries for a given board:
This outputs a CSV file with the following fields:

```json
["board", "angle", "climb_name", "date", "logged_grade", "displayed_grade", "difficulty", "tries", "is_mirror", "sessions_count", "tries_total", "is_repeat", "is_ascent", "comment"]
["board", "angle", "climb_name", "date", "logged_grade", "displayed_grade", "difficulty", "is_benchmark", "tries", "is_mirror", "sessions_count", "tries_total", "is_repeat", "is_ascent", "comment"]
```

For example, the command
Expand All @@ -41,10 +41,10 @@ For example, the command
would output a file named `tension.csv` with the following contents:

```
board,angle,climb_name,date,logged_grade,displayed_grade,difficulty,tries,is_mirror,sessions_count,tries_total,is_repeat,is_ascent,comment
tension,40,trash bag better,2024-06-17 16:21:23,V3,V3,16.0,3,False,1,3,False,True,
tension,40,Bumble,2024-06-17 16:28:23,V3,V3,16.0,1,True,1,1,False,True,
tension,40,sender2,2024-06-17 16:38:06,V5,V5,20.0,2,False,1,2,False,True,
board,angle,climb_name,date,logged_grade,displayed_grade,difficulty,is_benchmark,tries,is_mirror,sessions_count,tries_total,is_repeat,is_ascent,comment
tension,40,trash bag better,2024-06-17 16:21:23,V3,V3,16.0,False,3,False,1,3,False,True,
tension,40,Bumble,2024-06-17 16:28:23,V3,V3,16.0,True,1,True,1,1,False,True,
tension,40,sender2,2024-06-17 16:38:06,V5,V5,20.0,False,2,False,1,2,False,True,
...
```
When no local database is provided, displayed_grade and difficulty remain empty.
Expand Down
2 changes: 1 addition & 1 deletion src/boardlib/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
import boardlib.db.aurora


LOGBOOK_FIELDS = ("board", "angle", "climb_name", "date", "logged_grade", "displayed_grade", "difficulty", "tries", "is_mirror", "sessions_count", "tries_total", "is_repeat", "is_ascent", "comment")
LOGBOOK_FIELDS = ("board", "angle", "climb_name", "date", "logged_grade", "displayed_grade", "difficulty", "is_benchmark", "tries", "is_mirror", "sessions_count", "tries_total", "is_repeat", "is_ascent", "comment")


def logbook_entries(board, username, password, grade_type="font", database=None):
Expand Down
25 changes: 22 additions & 3 deletions src/boardlib/api/aurora.py
Original file line number Diff line number Diff line change
Expand Up @@ -434,6 +434,17 @@ def get_difficulty_from_db(database, climb_uuid, angle):
return row[0]
return None

def get_benchmark_from_db(database, climb_uuid, angle):
conn = sqlite3.connect(database)
cursor = conn.cursor()
cursor.execute(
"SELECT benchmark_difficulty FROM climb_stats WHERE climb_uuid = ? AND angle = ?",
(climb_uuid, angle)
)
row = cursor.fetchone()
conn.close()
return row[0] is not None if row else False


def convert_difficulty_to_grade(difficulty, grades_dict, grade_type):
grade_info = grades_dict.get(round(difficulty) if difficulty is not None else None, {})
Expand All @@ -449,10 +460,12 @@ def process_raw_ascent_entries(raw_ascents_entries, board, db_path, grades_dict,
climb_name = get_climb_name_from_db(db_path, raw_entry["climb_uuid"])
difficulty = get_difficulty_from_db(db_path, raw_entry["climb_uuid"], raw_entry["angle"])
displayed_grade = convert_difficulty_to_grade(difficulty, grades_dict, grade_type)
is_benchmark = get_benchmark_from_db(db_path, raw_entry["climb_uuid"], raw_entry["angle"])
else:
climb_name = get_climb_name(board, raw_entry["climb_uuid"])
difficulty = None
displayed_grade = None
is_benchmark = None

logged_grade = convert_difficulty_to_grade(raw_entry["difficulty"], grades_dict, grade_type)

Expand All @@ -465,6 +478,7 @@ def process_raw_ascent_entries(raw_ascents_entries, board, db_path, grades_dict,
"logged_grade": logged_grade,
"difficulty": difficulty,
"displayed_grade": displayed_grade,
"is_benchmark": is_benchmark,
"tries": raw_entry["attempt_id"] if raw_entry["attempt_id"] else raw_entry["bid_count"],
"is_mirror": raw_entry["is_mirror"],
"comment": raw_entry["comment"]
Expand Down Expand Up @@ -515,6 +529,7 @@ def combine_ascents_and_bids(ascents_df, bids_summary, db_path, grades_dict, gra
'logged_grade': ascent_row['logged_grade'],
'displayed_grade': ascent_row.get('displayed_grade', None),
'difficulty': ascent_row['difficulty'],
'is_benchmark': ascent_row.get('is_benchmark', None),
'tries': total_tries,
'is_mirror': ascent_row['is_mirror'],
'is_ascent': True,
Expand All @@ -532,6 +547,7 @@ def combine_ascents_and_bids(ascents_df, bids_summary, db_path, grades_dict, gra
'logged_grade': ascent_row['logged_grade'],
'displayed_grade': ascent_row.get('displayed_grade', None),
'difficulty': ascent_row['difficulty'],
'is_benchmark': ascent_row['is_benchmark'],
'tries': ascent_row['tries'],
'is_mirror': ascent_row['is_mirror'],
'is_ascent': True,
Expand All @@ -544,9 +560,11 @@ def combine_ascents_and_bids(ascents_df, bids_summary, db_path, grades_dict, gra
if db_path:
difficulty = get_difficulty_from_db(db_path, bid_row["climb_uuid"], bid_row["angle"])
displayed_grade = convert_difficulty_to_grade(difficulty, grades_dict, grade_type)
is_benchmark = get_benchmark_from_db(db_path, bid_row["climb_uuid"], bid_row["angle"])
else:
displayed_grade = None
difficulty = None
is_benchmark = None

final_logbook.append({
'climb_angle_uuid': climb_angle_uuid,
Expand All @@ -558,6 +576,7 @@ def combine_ascents_and_bids(ascents_df, bids_summary, db_path, grades_dict, gra
'logged_grade': None,
'displayed_grade': displayed_grade,
'difficulty': difficulty,
'is_benchmark': is_benchmark,
'tries': bid_row['tries'],
'is_mirror': bid_row['is_mirror'],
'is_ascent': False,
Expand Down Expand Up @@ -586,7 +605,7 @@ def logbook_entries(board, user_id, token, grade_type="font", db_path=None):
raw_ascents_entries = get_logbook(board, token, user_id)

if not bids_entries and not raw_ascents_entries:
return pd.DataFrame(columns=['climb_uuid', 'board', 'angle', 'climb_name', 'date', 'logged_grade', 'displayed_grade', 'difficulty', 'tries', 'is_mirror', 'is_ascent', 'comment'])
return pd.DataFrame(columns=['climb_uuid', 'board', 'angle', 'climb_name', 'date', 'logged_grade', 'displayed_grade', 'difficulty', 'is_benchmark', 'tries', 'is_mirror', 'is_ascent', 'comment'])

if bids_entries:
bids_df = pd.DataFrame(bids_entries)
Expand All @@ -601,11 +620,11 @@ def logbook_entries(board, user_id, token, grade_type="font", db_path=None):
ascents_entries = process_raw_ascent_entries(raw_ascents_entries, board, db_path, grades_dict, grade_type)
ascents_df = pd.DataFrame(ascents_entries)
else:
ascents_df = pd.DataFrame(columns=['board', 'angle', 'climb_uuid', 'name', 'date', 'logged_grade', 'difficulty', 'displayed_grade', 'tries', 'is_mirror', 'comment'])
ascents_df = pd.DataFrame(columns=['board', 'angle', 'climb_uuid', 'name', 'date', 'logged_grade', 'difficulty', 'displayed_grade', 'is_benchmark', 'tries', 'is_mirror', 'comment'])

final_logbook = combine_ascents_and_bids(ascents_df, bids_summary, db_path, grades_dict, grade_type)

full_logbook_df = pd.DataFrame(final_logbook, columns=['climb_angle_uuid', 'board', 'angle', 'climb_name', 'date', 'logged_grade', 'displayed_grade', 'difficulty', 'tries', 'is_mirror', 'is_ascent', 'comment'])
full_logbook_df = pd.DataFrame(final_logbook, columns=['climb_angle_uuid', 'board', 'angle', 'climb_name', 'date', 'logged_grade', 'displayed_grade', 'is_benchmark', 'difficulty', 'tries', 'is_mirror', 'is_ascent', 'comment'])
full_logbook_df['date'] = pd.to_datetime(full_logbook_df['date'])

full_logbook_df = full_logbook_df.groupby(['climb_name', 'is_mirror', 'angle']).apply(calculate_sessions_count).reset_index(drop=True)
Expand Down