Skip to content

leolya/Template-for-tflite-on-android

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Template-for-tflite-on-android

This is a template to test the reference speed of tflite model on android.

  • run the notebook to generate tflite model

    import tensorflow as tf
    from tensorflow.keras.applications import MobileNetV2
    
    model = MobileNetV2(weights='imagenet')
    converter = tf.lite.TFLiteConverter.from_keras_model(model)
    tflite_model = converter.convert()
    open("mobilenet.tflite", "wb").write(tflite_model)
  • put tflite model in assets folder

    ".\tfliteDemo\app\src\main\assets"

  • change model name in MainActivity.java

    private static final String MODEL = "mobilenet.tflite"; // model name
  • change the input and output shape in MainActivity.java "ModelRunAsyncTask"

  • you can put tflite.run(in, out) in a loop to test average reference speed

        private class ModelRunAsyncTask extends AsyncTask<Void, Void, Integer> {
            @Override
            protected Integer doInBackground(Void... args) {
    //            if output is an image
    //            int width = bitmap.getWidth();
    //            int height = bitmap.getHeight();
    //            float[][][][] out = new float[1][height][width][3];
                
                int height = 224;  // input shape
                int width = 224;
                float[][]out = new float[1][1000];  // output array
                float[][][][] in = getScaledMatrix(height, width, bitmap);
                long startTimeForReference = SystemClock.uptimeMillis();
                tflite.run(in, out);
                long endTimeForReference = SystemClock.uptimeMillis();
                referenceTime = endTimeForReference - startTimeForReference;
                Log.i(TAG, "Reference Time: " + referenceTime);
    
    //            outputBitmap = getBitmap(height, width, out);
                Message msg = Message.obtain();
                msg.arg1 = 1;
                mHandler.sendMessage(msg);
                return 1;
            }
        }

https://codelabs.developers.google.com/codelabs/recognize-flowers-with-tensorflow-on-android/#0

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published