Code for the CVPR2019 Event-based Vision Workshop paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"
Authors: Marco Cannici, Marco Ciccone, Andrea Romanoni, Matteo Matteucci
If you use this work for research, please cite our accompanying CVPR2019 Event-based Vision Workshop paper:
@inproceedings{cannici2019asynchronous,
title={Asynchronous Convolutional Networks for Object Detection in Neuromorphic Cameras},
author={Cannici, Marco and Ciccone, Marco and Romanoni, Andrea and Matteucci, Matteo},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year={2019}
}
- TensorFlow 1.4.0
- Cython extensions:
build_setup.sh
You can create a conda environment to run the code as it follows:
conda create -n aync-ev-cnn python=3.6`
conda activate aync-ev-cnn
conda env update -f=requirements.yml
python cython_setup.py build_ext --inplace
-
To check event layers equivalence (no dataset or checkpoint required):
python src/scripts/test_correctness.py
-
To run network predictions on a dataset (select the proper .yml file):
- Unzip under
data/
the N-Caltech101 data and checkpoint python src/scripts/run_networks.py -c configs/efcn_event.yml
- Unzip under