Skip to content

Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

License

Notifications You must be signed in to change notification settings

lioutasb/TaLKConvolutions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020)

This repository contains the source code, pre-trained models, as well as instructions to reproduce results for our paper Time-aware Large Kernel Convolutions (ICML 2020).

TaLK Convolutions is a sequence modeling method that uses an adaptive convolution operation that learns to predict the size of a summation kernel instead of using a fixed-sized learnable kernel matrix. It utilizes a fast parallelized implementation of the summed-area table, also known as the integral image operation, to efficiently calculate the convolution output that uses the summation kernel. We generate relative offsets for each timestep of the input sequence, which are used to adaptively expand the size of the summation kernel conditioned on the input. This method yields a time complexity of O(n), effectively making the sequence encoding process linear to the number of tokens.

Video Presentation:

Time-aware Large Kernel Convolutions (ICML 2020)

Citation:

@inproceedings{lioutas2020timeaware,
    author={Vasileios Lioutas and Yuhong Guo},
    title={Time-aware Large Kernel Convolutions},
    booktitle={Proceedings of the 37th International Conference on Machine Learning (ICML)},
    year={2020}
}

Setup

Requirements

  • PyTorch version >= 1.3.1
  • fairseq version >= 0.10.1
  • Python version >= 3.6
  • CUDA >= 10.1
  • NVIDIA's apex library (for mixed-precision training)

Clone this repository

git clone https://github.com/lioutasb/TaLKConvolutions.git
cd TaLKConvolutions

Efficient CUDA Kernels

In order to support the parallelization of TaLK Convolutions, we have developed our own CUDA primitives. To install the kernels, use the commands below. We tested compiling the kernels using CUDA 10.1 but if a future CUDA release does not work, please feel free to open an issue.

cd talkconv/talkconv_module/
python setup.py install

We are welcoming contributions from experienced CUDA developers regarding making the CUDA kernels more efficient.

Translation

Pre-trained models

Dataset Model Prepared test set
IWSLT14 German-English download (.pt) IWSLT14 test: download (.zip)
WMT16 English-German download (.pt) newstest2014: download (.zip)
WMT14 English-French download (.pt) newstest2014: download (.zip)

Preprocessing the training datasets

Please follow the instructions https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md to preprocess the data.

IWSLT14 De-En

Training and evaluating TaLK Convolutions on a single GPU:

# Training
SAVE="checkpoints/talkconv_iwslt_deen"
mkdir -p $SAVE

CUDA_VISIBLE_DEVICES=0 \
fairseq-train data-bin/iwslt14.tokenized.de-en \
    --user-dir talkconv/talkconv_fairseq \
    --arch talkconv_iwslt_de_en \
    --optimizer adam  --fp16 --lr 0.0005 \
    --source-lang de --target-lang en --max-tokens 4000 \
    --min-lr '1e-09' --weight-decay 0.0001 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --lr-scheduler inverse_sqrt \
    --dropout 0.3 --attention-dropout 0.1 --weight-dropout 0.1  \
    --max-update 85000 --warmup-updates 4000 --warmup-init-lr '1e-07' \
    --adam-betas '(0.9, 0.98)' --left-pad-source "False" --max-epoch 52 --seed 1024 \
    --save-dir $SAVE 

python utils/average_checkpoints.py --inputs $SAVE \
    --num-epoch-checkpoints 10 --output "${SAVE}/model.pt"

# Evaluation
fairseq-generate data-bin/iwslt14.tokenized.de-en --user-dir talkconv/talkconv_fairseq \
    --path "${SAVE}/model.pt" \
    --batch-size 128 --beam 5 --remove-bpe --lenpen 1.6 --gen-subset test --quiet 

WMT16 En-De

Training and evaluating TaLK Convolutions on WMT16 En-De using cosine scheduler on one machine with 8 NVIDIA GPUs:

# Training
SAVE="checkpoints/talkconv_wmt_ende_big"
mkdir -p $SAVE

python -m torch.distributed.launch --nproc_per_node 8 fairseq-train \
    data-bin/wmt16_en_de_bpe32k --fp16 --log-interval 100 --no-progress-bar --distributed-no-spawn \
    --user-dir talkconv/talkconv_fairseq \
    --max-update 30243 --share-all-embeddings --optimizer adam \
    --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --min-lr 1e-09 --update-freq 16 \
    --ddp-backend=no_c10d --max-tokens 3584 \
    --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \
    --lr-shrink 1 --max-lr 0.001 --lr 1e-7 --min-lr 1e-9 --warmup-init-lr 1e-07 \
    --t-mult 1 --lr-period-updates 20000 \
    --arch talkconv_wmt_en_de_big \
    --save-dir $SAVE

# Checkpoint averaging
python utilss/average_checkpoints.py --inputs $SAVE \
    --num-epoch-checkpoints 10 --output "${SAVE}/model.pt"

# Evaluation on newstest2014
CUDA_VISIBLE_DEVICES=0 \
fairseq-generate data-bin/wmt16_en_de_bpe32k --user-dir talkconv/talkconv_fairseq \
  --path "${SAVE}/model.pt" \
  --batch-size 128 --beam 4 --remove-bpe --lenpen 0.35 --gen-subset test > wmt14_gen_ende.txt 

bash utils/compound_split_bleu.sh wmt14_gen_ende.txt 

WMT14 En-Fr

Training and evaluating TaLK Convolutions on WMT14 En-Fr using cosine scheduler on one machine with 8 NVIDIA GPUs:

# Training
SAVE="checkpoints/talkconv_wmt_enfr_big"
mkdir -p $SAVE
python -m torch.distributed.launch --nproc_per_node 8 fairseq-train \
    data-bin/wmt14_en_fr --fp16 --log-interval 100 --no-progress-bar --distributed-no-spawn \
    --user-dir talkconv/talkconv_fairseq \
    --max-update 80000 --share-all-embeddings --optimizer adam \
    --adam-betas '(0.9, 0.98)' --clip-norm 0.0 --weight-decay 0.0 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --min-lr 1e-09 --update-freq 32 \
    --ddp-backend=no_c10d --max-tokens 1800 \
    --lr-scheduler cosine --warmup-init-lr 1e-7 --warmup-updates 10000 \
    --lr-shrink 1 --max-lr 0.001 --lr 1e-7 --min-lr 1e-9 --warmup-init-lr 1e-07 \
    --t-mult 1 --lr-period-updates 70000 \
    --arch talkconv_wmt_en_fr_big \
    --save-dir $SAVE

# Checkpoint averaging
python utils/average_checkpoints.py --inputs $SAVE \
    --num-epoch-checkpoints 10 --output "${SAVE}/model.pt"

# Evaluation
CUDA_VISIBLE_DEVICES=0 \
fairseq-generate data-bin/wmt14_en_fr --user-dir talkconv/talkconv_fairseq \
    --path "${SAVE}/model.pt" \
    --batch-size 128 --beam 6 --remove-bpe --lenpen 0.65 --gen-subset test --quiet 

License

This project is MIT-licensed. The license applies to the pre-trained models as well.

About

Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published