Skip to content
/ pimdb Public

A lightweight Persisted In-Memory Database written in TypeScript.

License

Notifications You must be signed in to change notification settings

lirbank/pimdb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

70 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PimDB

A lightweight Persisted In-Memory Database written in TypeScript.

⚠️ Alpha notice: PimDB is in an early stage of development. Persistence is not yet available, and features as well as the API are subject to change. Use with caution in experimental or non-critical projects.

A lightweight, persisted in-memory database built from the ground up for the browser. PimDB delivers fast and efficient text indexing with substring, n-gram, and sorted indexes, enabling quick lookups for both partial and exact matches. On a dataset of 100,000 documents, it's currently 4,000x+ faster than Array.filter for sorted lookups and 700x+ faster for substring searches.

Features

  • πŸš€ Lightweight and fast
  • πŸ“¦ Zero dependencies
  • πŸ’ͺ TypeScript support
  • πŸ”’ Type-safe operations
  • πŸ› οΈ Simple API
  • πŸ” Pluggable indexes
  • πŸ”„ Reactivity (React hook coming soon)

Installation

PimDB is published on npmjs.com.

# Using bun
bun add pimdb

# Using pnpm
pnpm add pimdb

# Using npm
npm install pimdb

# Using yarn
yarn add pimdb

Quick start

1. Setting up the database

// db.ts

import {
  createPimDB,
  PimCollection,
  PimPrimaryIndex,
  PimSortedIndex,
  PimSubstringIndex,
} from "pimdb";

interface User {
  id: string;
  name: string;
  age: number;
}

interface Post {
  id: string;
  title: string;
  content: string;
  isPublished?: boolean;
}

// Define user indexes
const userIndexes = {
  primary: new PimPrimaryIndex<User>(),
  byName: new PimSortedIndex<User>("name"),
  nameSearch: new PimSubstringIndex<User>("name"),
};

// Define post indexes
const postIndexes = {
  primary: new PimPrimaryIndex<Post>(),
  byTitle: new PimSortedIndex<Post>("title"),
  titleSearch: new PimSubstringIndex<Post>("title"),
};

// Create and export database with collections
export const db = createPimDB({
  users: new PimCollection<User, typeof userIndexes>(userIndexes),
  posts: new PimCollection<Post, typeof postIndexes>(postIndexes),
});

2. Using the database

import { db } from "./db";

// Insert data
db.users.insert({
  id: "1",
  name: "Alice",
  age: 30,
});

db.posts.insert({
  id: "1",
  title: "Hello, world!",
  content: "Welcome to the universe.",
  isPublished: true,
});

// All read operations are performed directly on the indexes
const user = db.users.indexes.primary.get("1");
const aliceUsers = db.users.indexes.byName.find("Alice");
const searchResults = db.users.indexes.nameSearch.search("li");
const thirtyPlus = db.users.indexes.byAge.findInRange({ gte: 30 });

Indexes

PimDB comes with three index types to optimize your data queries.

Primary index

const primaryIndex = new PimPrimaryIndex<User>();
  • Unique index, mandatory for each collection
  • Supports retrieving single documents or all documents in the collection
  • Provides O(1) performance for lookups by document ID

Sorted index

const sortedIndex = new PimSortedIndex<User>("name");
  • Enables efficient exact matches and range queries (case-sensitive)
  • Maintains documents sorted by a specified field, with document ID as a tie-breaker for consistent result ordering
  • Provides O(log n) performance for lookups

Substring index

const substringIndex = new PimSubstringIndex<User>("name");
  • Optimized for real-time search and partial text matching
  • Supports case-insensitive substring searches within text fields
  • Provides O(1) performance for partial matches

Trigram index

  • Coming soon.

Custom index

Create your own indexes by implementing the PimIndex interface.

interface PimIndex<T> {
  insert(item: T): boolean;
  update(item: T): boolean;
  delete(item: T): boolean;
}

export class MyIndex<T extends BaseDocument> implements PimIndex<T> {
  /**
   * Insert a document into the index.
   *
   * Returns true if the document was updated, false if it was not found.
   */
  insert(doc: T): boolean {
    // Implement me
    return false;
  }

  /**
   * Update a document in the index.
   *
   * Returns true if the document was updated, false if it was not found.
   */
  update(doc: T): boolean {
    // Implement me
    return false;
  }

  /**
   * Delete a document from the index.
   *
   * Returns true if the document was deleted, false if it was not found.
   */
  delete(doc: T): boolean {
    // Implement me
    return false;
  }

  /**
   * Implement your query methods here.
   */
  myQuery(id: T["id"]): T | undefined {
    // Implement me
    return undefined;
  }
}

Benchmarks

Initial benchmarks were conducted on a MacBook Pro M1 Max with 64 GB RAM.

Sorted index - Chromium

Setup: 100,000 documents with a name field.

Name Hz Min Max Mean P75 P99 P995 P999 RME Samples
array.filter 1,593.88 0.5000 1.1000 0.6274 0.7000 0.9000 1.0000 1.1000 Β±0.86% 1000
sorted.find 3,482,412.00 0.0000 3.8000 0.0003 0.0000 0.0000 0.0000 0.1000 Β±3.13% 1741206

Summary: 2184.87x faster than native Array.filter().

Substring index - Chromium

Setup: 100,000 documents with a title field.

Name Hz Min Max Mean P75 P99 P995 P999 RME Samples Notes
array.filter 183.81 4.8000 7.2000 5.4404 5.6000 6.5000 6.8000 7.0000 Β±0.43% 1000
substring.search 151,486.00 0.0000 0.3000 0.0066 0.0000 0.1000 0.1000 0.1000 Β±2.72% 75743 Fastest

Summary: 824.14x faster than native Array.filter().

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a pull request

License

This project is open-source and available under the MIT License. Feel free to use it in your projects!

Authored and maintained by Mikael Lirbank (@lirbank).

If you find this project helpful, consider giving it a ⭐️ on GitHub!

About the author

I'm an experienced developer passionate about building performant and elegant solutions. Currently open to new consulting projects or full-time opportunities. Visit lirbank.com to connect.

About

A lightweight Persisted In-Memory Database written in TypeScript.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages