Randomness_Analysis for Data Augmentation [Paper] (Will be updated)
✅ This repo is about to data Augmentation containing cutmix, mixup, RandAugment ...
✅ You can do experiments with model ResNet50, ResNet101, WideResNet_28x10.
# Create Conda Env
conda create -n myrand python=3.8
# Activate myrand
conda activate myrand
# cuda version
conda install cudatoolkit=11.3 -c pytorch
Download Tiny-imagenet
# Make directory "data"
mkdir ./lightning-hydra-template/data
# unzip Tinyimagenet
unzip ./lightning-hydra-template/data/tiny-imagenet-200.zip
- Note that if you use Code related to CIFAR-100, then download the data automatically from torchvision.datasets
If you want to use various Augmentations that we provide, you should change argument named "aug" at data_config and model_config. Note that these are options about augmentations.
- [baseline, mixup, cutmix, randour_cutmix, cutmix_randour, randaug_mixup, randaug_cutmix, cutmix_randaug]
1. cifar100_resnet50
2. cifar100_resnet101
3. cifar100_wideresnet
4. tinyimagenet_resnet50
5. tinyimagenet_resnet101
6. tinyimagenet_wideresnet
1. cifar100
2. tinyimagenet
# train on CPU
python train.py trainer=cpu model={model_config_name} data={data_config_name}
# train on 1 GPU
python train.py trainer=gpu model={model_config_name} data={data_config_name}
# train with DDP (Distributed Data Parallel) (4 GPUs)
python train.py trainer=ddp trainer.devices=4 model={model_config_name} data={data_config_name}
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.6662 | TinyImagenet | Baseline |
Wide_Resnet_28x10 | 0.6686 | TinyImagenet | Cutout |
Wide_Resnet_28x10 | 0.6889 | TinyImagenet | mixup |
Wide_Resnet_28x10 | 0.7057 | TinyImagenet | Cutmix |
Wide_Resnet_28x10 | 0.687 | TinyImagenet | Randaugment |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.7943 | Cifar100 | Baseline |
Wide_Resnet_28x10 | 0.8096 | Cifar100 | Cutout |
Wide_Resnet_28x10 | 0.8232 | Cifar100 | mixup |
Wide_Resnet_28x10 | 0.8237 | Cifar100 | Cutmix |
Wide_Resnet_28x10 | 0.8089 | Cifar100 | Randaugment |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.7041 | TinyImagenet | Randaugment → mixup |
Wide_Resnet_28x10 | 0.716 | TinyImagenet | Randaugment → cutmix |
Wide_Resnet_28x10 | 0.6889 | TinyImagenet | mixup |
Wide_Resnet_28x10 | 0.7057 | TinyImagenet | cutmix |
Resnet50 | 0.5871 | TinyImagenet | Randaugment → mixup |
Resnet50 | 0.639 | TinyImagenet | Randaugment → cutmix |
Resnet50 | 0.5298 | TinyImagenet | mixup |
Resnet50 | 0.5768 | TinyImagenet | cutmix |
Resnet101 | 0.5912 | TinyImagenet | Randaugment → mixup |
Resnet101 | 0.6362 | TinyImagenet | Randaugment → cutmix |
Resnet101 | 0.5789 | TinyImagenet | mixup |
Resnet101 | 0.5285 | TinyImagenet | cutmix |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.8325 | Cifar100 | Randaugment + mixup |
Wide_Resnet_28x10 | 0.8358 | Cifar100 | Randaugment + cutmix |
Wide_Resnet_28x10 | 0.8232 | Cifar100 | mixup |
Wide_Resnet_28x10 | 0.8237 | Cifar100 | cutmix |
Resnet50 | 0.6485 | Cifar100 | Randaugment + mixup |
Resnet50 | 0.6803 | Cifar100 | Randaugment + cutmix |
Resnet50 | 0.6262 | Cifar100 | mixup |
Resnet50 | 0.6453 | Cifar100 | cutmix |
Resnet101 | 0.6431 | Cifar100 | Randaugment + mixup |
Resnet101 | 0.6596 | Cifar100 | Randaugment + cutmix |
Resnet101 | 0.619 | Cifar100 | mixup |
Resnet101 | 0.6382 | Cifar100 | cutmix |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.7163 | TinyImagenet | Randaugment → cutmix |
Wide_Resnet_28x10 | 0.7201 | TinyImagenet | Randours → cutmix |
Resnet50 | 0.639 | TinyImagenet | Randaugment → cutmix |
Resnet50 | 0.5989 | TinyImagenet | Randours → cutmix |
Resnet101 | 0.6362 | TinyImagenet | Randaugment → cutmix |
Resnet101 | 0.6 | TinyImagenet | Randours → cutmix |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.8358 | Cifar100 | Randaugment → cutmix |
Wide_Resnet_28x10 | 0.8432 | Cifar100 | Randours → cutmix |
Resnet50 | 0.685 | Cifar100 | Randaugment → cutmix |
Resnet50 | 0.6536 | Cifar100 | Randours → cutmix |
Resnet101 | 0.6596 | Cifar100 | Randaugment → cutmix |
Resnet101 | 0.6517 | Cifar100 | Randours → cutmix |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.7163 | TinyImagenet | Randaugment → cutmix |
Wide_Resnet_28x10 | 0.7015 | TinyImagenet | cutmix → Randaugment |
Resnet50 | 0.639 | TinyImagenet | Randaugment → cutmix |
Resnet50 | 0.5807 | TinyImagenet | cutmix → Randaugment |
Resnet101 | 0.6362 | TinyImagenet | Randaugment → cutmix |
Resnet101 | 0.5835 | TinyImagenet | cutmix → Randaugment |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.7201 | TinyImagenet | Randours → cutmix |
Wide_Resnet_28x10 | 0.7173 | TinyImagenet | cutmix → Randours |
Resnet50 | 0.5989 | TinyImagenet | Randours → cutmix |
Resnet50 | 0.5979 | TinyImagenet | cutmix → Randours |
Resnet101 | 0.6 | TinyImagenet | Randours → cutmix |
Resnet101 | 0.5967 | TinyImagenet | cutmix → Randours |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.8358 | Cifar100 | Randaugment → cutmix |
Wide_Resnet_28x10 | 0.8253 | Cifar100 | cutmix → Randaugment |
Resnet50 | 0.685 | Cifar100 | Randaugment → cutmix |
Resnet50 | 0.6141 | Cifar100 | cutmix → Randaugment |
Resnet101 | 0.6596 | Cifar100 | Randaugment → cutmix |
Resnet101 | 0.6117 | Cifar100 | cutmix → Randaugment |
Model | Accuracy | Dataset | Augmentation |
---|---|---|---|
Wide_Resnet_28x10 | 0.843 | Cifar100 | Randours → cutmix |
Wide_Resnet_28x10 | 0.84 | Cifar100 | cutmix → Randours |
Resnet50 | 0.6536 | Cifar100 | Randours → cutmix |
Resnet50 | 0.6516 | Cifar100 | cutmix → Randours |
Resnet101 | 0.6517 | Cifar100 | Randours → cutmix |
Resnet101 | 0.6438 | Cifar100 | cutmix → Randours |