-
카메라 영상 화질 정량 평가 및 자연어 정성 평가를 동시 생성하는 알고리즘 개발
-
종합 등수 : 6th
-
coworker : 화질 정성 평가 code
박주용 | 허건혁 |
---|---|
- 주관 : 삼성전자 SAIT
- 운영 : 데이콘
- 대회 : link
대회 기간 : 2023-08-21-11:00 ~ 2023-10-02-10:00
Input : 사진
Output : 화질 평가 점수(float)
평가 산식 :
-
clone repo
-
build image
docker build -t my_image:1.0.0 .
(you can change name and tag)
- docker run
docker run -it --name {name_you_want} --gpus all --ipc=host my_image:1.0.0 /bin/bash
※ raw_data를 data folder에 저장
# Data preprocessing
train_image_path : /data/train
test_image_path : /data/test
# Model Train
cd /lightning-hydra-template/src
python train.py model=maniqa_{model_size}_model data=maniqa_{model_size}_data trainer.devices={num_your_device} trainer=ddp
{model_size} = 384,448,640
# Another fold for training
default fold is fold0. (There are fold0,1,2,3,4)
if you want another fold for train,
you should change train,val_csv_file directory at
'/lightning-hydra-template/configs/data/maniqa_{model_size}_data.yaml'
{model_size} = 384, 448, 640
Ex) fold1
train_csv_file: ${paths.data_dir}/train_only_mos/train_df_fold1.csv
valid_csv_file: ${paths.data_dir}/train_only_mos/val_df_fold1.csv
# Model Inference
cd /lightning-hydra-template/src
python eval.py ckpt_path=../weight/{your_weight_file} model=maniqa_{model_size}_model data=maniqa_{model_size}_data model.name={name_of_your_inference_csv_file}
Type | score | Rank |
---|---|---|
Public | 0.7874 | 6 |
Private | 0.57225 | 5 |