Skip to content

Commit

Permalink
[Reassociate] Use uint64_t for repeat count (#94232)
Browse files Browse the repository at this point in the history
This patch relands #91469 and uses `uint64_t` for repeat count to avoid
a miscompilation caused by overflow
#91469 (comment).
  • Loading branch information
dtcxzyw authored Jun 8, 2024
1 parent d9507a3 commit 645fb04
Show file tree
Hide file tree
Showing 2 changed files with 43 additions and 122 deletions.
120 changes: 12 additions & 108 deletions llvm/lib/Transforms/Scalar/Reassociate.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -302,98 +302,7 @@ static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
return Res;
}

/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
/// even x in Bitwidth-bit arithmetic.
static unsigned CarmichaelShift(unsigned Bitwidth) {
if (Bitwidth < 3)
return Bitwidth - 1;
return Bitwidth - 2;
}

/// Add the extra weight 'RHS' to the existing weight 'LHS',
/// reducing the combined weight using any special properties of the operation.
/// The existing weight LHS represents the computation X op X op ... op X where
/// X occurs LHS times. The combined weight represents X op X op ... op X with
/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
// If we were working with infinite precision arithmetic then the combined
// weight would be LHS + RHS. But we are using finite precision arithmetic,
// and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
// for nilpotent operations and addition, but not for idempotent operations
// and multiplication), so it is important to correctly reduce the combined
// weight back into range if wrapping would be wrong.

// If RHS is zero then the weight didn't change.
if (RHS.isMinValue())
return;
// If LHS is zero then the combined weight is RHS.
if (LHS.isMinValue()) {
LHS = RHS;
return;
}
// From this point on we know that neither LHS nor RHS is zero.

if (Instruction::isIdempotent(Opcode)) {
// Idempotent means X op X === X, so any non-zero weight is equivalent to a
// weight of 1. Keeping weights at zero or one also means that wrapping is
// not a problem.
assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
return; // Return a weight of 1.
}
if (Instruction::isNilpotent(Opcode)) {
// Nilpotent means X op X === 0, so reduce weights modulo 2.
assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
LHS = 0; // 1 + 1 === 0 modulo 2.
return;
}
if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
// TODO: Reduce the weight by exploiting nsw/nuw?
LHS += RHS;
return;
}

assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
"Unknown associative operation!");
unsigned Bitwidth = LHS.getBitWidth();
// If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
// can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
// bit number x, since either x is odd in which case x^CM = 1, or x is even in
// which case both x^W and x^(W - CM) are zero. By subtracting off multiples
// of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
// which by a happy accident means that they can always be represented using
// Bitwidth bits.
// TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
// the Carmichael number).
if (Bitwidth > 3) {
/// CM - The value of Carmichael's lambda function.
APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
// Any weight W >= Threshold can be replaced with W - CM.
APInt Threshold = CM + Bitwidth;
assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
// For Bitwidth 4 or more the following sum does not overflow.
LHS += RHS;
while (LHS.uge(Threshold))
LHS -= CM;
} else {
// To avoid problems with overflow do everything the same as above but using
// a larger type.
unsigned CM = 1U << CarmichaelShift(Bitwidth);
unsigned Threshold = CM + Bitwidth;
assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
"Weights not reduced!");
unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
while (Total >= Threshold)
Total -= CM;
LHS = Total;
}
}

using RepeatedValue = std::pair<Value*, APInt>;
using RepeatedValue = std::pair<Value *, uint64_t>;

/// Given an associative binary expression, return the leaf
/// nodes in Ops along with their weights (how many times the leaf occurs). The
Expand Down Expand Up @@ -475,7 +384,6 @@ static bool LinearizeExprTree(Instruction *I,
assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
"Expected a UnaryOperator or BinaryOperator!");
LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
unsigned Opcode = I->getOpcode();
assert(I->isAssociative() && I->isCommutative() &&
"Expected an associative and commutative operation!");
Expand All @@ -490,8 +398,8 @@ static bool LinearizeExprTree(Instruction *I,
// with their weights, representing a certain number of paths to the operator.
// If an operator occurs in the worklist multiple times then we found multiple
// ways to get to it.
SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
SmallVector<std::pair<Instruction *, uint64_t>, 8> Worklist; // (Op, Weight)
Worklist.push_back(std::make_pair(I, 1));
bool Changed = false;

// Leaves of the expression are values that either aren't the right kind of
Expand All @@ -509,7 +417,7 @@ static bool LinearizeExprTree(Instruction *I,

// Leaves - Keeps track of the set of putative leaves as well as the number of
// paths to each leaf seen so far.
using LeafMap = DenseMap<Value *, APInt>;
using LeafMap = DenseMap<Value *, uint64_t>;
LeafMap Leaves; // Leaf -> Total weight so far.
SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
const DataLayout DL = I->getModule()->getDataLayout();
Expand All @@ -518,8 +426,8 @@ static bool LinearizeExprTree(Instruction *I,
SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
#endif
while (!Worklist.empty()) {
std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
I = P.first; // We examine the operands of this binary operator.
// We examine the operands of this binary operator.
auto [I, Weight] = Worklist.pop_back_val();

if (isa<OverflowingBinaryOperator>(I)) {
Flags.HasNUW &= I->hasNoUnsignedWrap();
Expand All @@ -528,7 +436,6 @@ static bool LinearizeExprTree(Instruction *I,

for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
Value *Op = I->getOperand(OpIdx);
APInt Weight = P.second; // Number of paths to this operand.
LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
assert(!Op->use_empty() && "No uses, so how did we get to it?!");

Expand Down Expand Up @@ -562,7 +469,8 @@ static bool LinearizeExprTree(Instruction *I,
"In leaf map but not visited!");

// Update the number of paths to the leaf.
IncorporateWeight(It->second, Weight, Opcode);
It->second += Weight;
assert(It->second >= Weight && "Weight overflows");

// If we still have uses that are not accounted for by the expression
// then it is not safe to modify the value.
Expand Down Expand Up @@ -625,10 +533,7 @@ static bool LinearizeExprTree(Instruction *I,
// Node initially thought to be a leaf wasn't.
continue;
assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
APInt Weight = It->second;
if (Weight.isMinValue())
// Leaf already output or weight reduction eliminated it.
continue;
uint64_t Weight = It->second;
// Ensure the leaf is only output once.
It->second = 0;
Ops.push_back(std::make_pair(V, Weight));
Expand All @@ -642,7 +547,7 @@ static bool LinearizeExprTree(Instruction *I,
if (Ops.empty()) {
Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
assert(Identity && "Associative operation without identity!");
Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Ops.emplace_back(Identity, 1);
}

return Changed;
Expand Down Expand Up @@ -1188,8 +1093,7 @@ Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Factors.reserve(Tree.size());
for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
RepeatedValue E = Tree[i];
Factors.append(E.second.getZExtValue(),
ValueEntry(getRank(E.first), E.first));
Factors.append(E.second, ValueEntry(getRank(E.first), E.first));
}

bool FoundFactor = false;
Expand Down Expand Up @@ -2368,7 +2272,7 @@ void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
SmallVector<ValueEntry, 8> Ops;
Ops.reserve(Tree.size());
for (const RepeatedValue &E : Tree)
Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
Ops.append(E.second, ValueEntry(getRank(E.first), E.first));

LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');

Expand Down
45 changes: 31 additions & 14 deletions llvm/test/Transforms/Reassociate/repeats.ll
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,8 @@ define i3 @foo3x5(i3 %x) {
; CHECK-SAME: i3 [[X:%.*]]) {
; CHECK-NEXT: [[TMP3:%.*]] = mul i3 [[X]], [[X]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i3 [[TMP3]], [[X]]
; CHECK-NEXT: ret i3 [[TMP4]]
; CHECK-NEXT: [[TMP5:%.*]] = mul i3 [[TMP4]], [[TMP3]]
; CHECK-NEXT: ret i3 [[TMP5]]
;
%tmp1 = mul i3 %x, %x
%tmp2 = mul i3 %tmp1, %x
Expand All @@ -74,7 +75,8 @@ define i3 @foo3x5_nsw(i3 %x) {
; CHECK-LABEL: define i3 @foo3x5_nsw(
; CHECK-SAME: i3 [[X:%.*]]) {
; CHECK-NEXT: [[TMP3:%.*]] = mul i3 [[X]], [[X]]
; CHECK-NEXT: [[TMP4:%.*]] = mul nsw i3 [[TMP3]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i3 [[TMP3]], [[X]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i3 [[TMP2]], [[TMP3]]
; CHECK-NEXT: ret i3 [[TMP4]]
;
%tmp1 = mul i3 %x, %x
Expand All @@ -89,7 +91,8 @@ define i3 @foo3x6(i3 %x) {
; CHECK-LABEL: define i3 @foo3x6(
; CHECK-SAME: i3 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i3 [[X]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i3 [[TMP1]], [[TMP1]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i3 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i3 [[TMP3]], [[TMP3]]
; CHECK-NEXT: ret i3 [[TMP2]]
;
%tmp1 = mul i3 %x, %x
Expand All @@ -106,7 +109,9 @@ define i3 @foo3x7(i3 %x) {
; CHECK-SAME: i3 [[X:%.*]]) {
; CHECK-NEXT: [[TMP5:%.*]] = mul i3 [[X]], [[X]]
; CHECK-NEXT: [[TMP6:%.*]] = mul i3 [[TMP5]], [[X]]
; CHECK-NEXT: ret i3 [[TMP6]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i3 [[TMP6]], [[X]]
; CHECK-NEXT: [[TMP7:%.*]] = mul i3 [[TMP3]], [[TMP6]]
; CHECK-NEXT: ret i3 [[TMP7]]
;
%tmp1 = mul i3 %x, %x
%tmp2 = mul i3 %tmp1, %x
Expand All @@ -123,7 +128,8 @@ define i4 @foo4x8(i4 %x) {
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP1]], [[TMP1]]
; CHECK-NEXT: ret i4 [[TMP4]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP4]], [[TMP4]]
; CHECK-NEXT: ret i4 [[TMP3]]
;
%tmp1 = mul i4 %x, %x
%tmp2 = mul i4 %tmp1, %x
Expand All @@ -140,8 +146,9 @@ define i4 @foo4x9(i4 %x) {
; CHECK-LABEL: define i4 @foo4x9(
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP8:%.*]] = mul i4 [[TMP2]], [[TMP1]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP1]], [[TMP1]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP2]], [[X]]
; CHECK-NEXT: [[TMP8:%.*]] = mul i4 [[TMP3]], [[TMP2]]
; CHECK-NEXT: ret i4 [[TMP8]]
;
%tmp1 = mul i4 %x, %x
Expand All @@ -160,7 +167,8 @@ define i4 @foo4x10(i4 %x) {
; CHECK-LABEL: define i4 @foo4x10(
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP1]], [[TMP1]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP4]], [[X]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP2]], [[TMP2]]
; CHECK-NEXT: ret i4 [[TMP3]]
;
Expand All @@ -181,7 +189,8 @@ define i4 @foo4x11(i4 %x) {
; CHECK-LABEL: define i4 @foo4x11(
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP1]], [[TMP1]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP4]], [[X]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP2]], [[X]]
; CHECK-NEXT: [[TMP10:%.*]] = mul i4 [[TMP3]], [[TMP2]]
; CHECK-NEXT: ret i4 [[TMP10]]
Expand All @@ -204,7 +213,9 @@ define i4 @foo4x12(i4 %x) {
; CHECK-LABEL: define i4 @foo4x12(
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP1]], [[TMP1]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP4]], [[TMP4]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP3]], [[TMP3]]
; CHECK-NEXT: ret i4 [[TMP2]]
;
%tmp1 = mul i4 %x, %x
Expand All @@ -227,7 +238,9 @@ define i4 @foo4x13(i4 %x) {
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP12:%.*]] = mul i4 [[TMP2]], [[TMP1]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP2]], [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP3]], [[X]]
; CHECK-NEXT: [[TMP12:%.*]] = mul i4 [[TMP4]], [[TMP3]]
; CHECK-NEXT: ret i4 [[TMP12]]
;
%tmp1 = mul i4 %x, %x
Expand All @@ -252,7 +265,9 @@ define i4 @foo4x14(i4 %x) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP6:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP7:%.*]] = mul i4 [[TMP6]], [[TMP6]]
; CHECK-NEXT: ret i4 [[TMP7]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP7]], [[X]]
; CHECK-NEXT: [[TMP5:%.*]] = mul i4 [[TMP4]], [[TMP4]]
; CHECK-NEXT: ret i4 [[TMP5]]
;
%tmp1 = mul i4 %x, %x
%tmp2 = mul i4 %tmp1, %x
Expand All @@ -276,8 +291,10 @@ define i4 @foo4x15(i4 %x) {
; CHECK-SAME: i4 [[X:%.*]]) {
; CHECK-NEXT: [[TMP1:%.*]] = mul i4 [[X]], [[X]]
; CHECK-NEXT: [[TMP6:%.*]] = mul i4 [[TMP1]], [[X]]
; CHECK-NEXT: [[TMP5:%.*]] = mul i4 [[TMP6]], [[X]]
; CHECK-NEXT: [[TMP14:%.*]] = mul i4 [[TMP5]], [[TMP6]]
; CHECK-NEXT: [[TMP3:%.*]] = mul i4 [[TMP6]], [[TMP6]]
; CHECK-NEXT: [[TMP4:%.*]] = mul i4 [[TMP3]], [[X]]
; CHECK-NEXT: [[TMP5:%.*]] = mul i4 [[TMP4]], [[X]]
; CHECK-NEXT: [[TMP14:%.*]] = mul i4 [[TMP5]], [[TMP4]]
; CHECK-NEXT: ret i4 [[TMP14]]
;
%tmp1 = mul i4 %x, %x
Expand Down

0 comments on commit 645fb04

Please sign in to comment.