-
Notifications
You must be signed in to change notification settings - Fork 12.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MLIR][XeGPU] Adding XeGPU 2d block operators #84692
Conversation
@llvm/pr-subscribers-mlir-gpu @llvm/pr-subscribers-mlir Author: Chao Chen (chencha3) ChangesThis adds XeGPU 2D block operators. It contains:
Patch is 37.25 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/84692.diff 8 Files Affected:
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
index 7aaa4ecc7ee77a..8dc3ff78d25ede 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
@@ -9,7 +9,11 @@
#ifndef MLIR_DIALECT_XEGPU_IR_XEGPU_H
#define MLIR_DIALECT_XEGPU_IR_XEGPU_H
+#include <mlir/Bytecode/BytecodeOpInterface.h>
+#include <mlir/IR/BuiltinTypes.h>
#include <mlir/IR/Dialect.h>
+#include <mlir/Interfaces/ShapedOpInterfaces.h>
+#include <mlir/Interfaces/SideEffectInterfaces.h>
namespace mlir {
namespace xegpu {
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
index bb325c272e3324..cd38549f1ccf43 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -10,6 +10,7 @@
#define MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
include "mlir/Dialect/XeGPU/IR/XeGPUDialect.td"
+include "mlir/IR/EnumAttr.td"
class XeGPUAttr<string name, string attrMnemonic, list<Trait> traits = [],
string baseCppClass = "::mlir::Attribute">
@@ -17,4 +18,64 @@ class XeGPUAttr<string name, string attrMnemonic, list<Trait> traits = [],
let mnemonic = attrMnemonic;
}
+def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> {
+ let parameters = (ins
+ OptionalParameter<"MemoryScopeAttr">: $memory_scope,
+ OptionalParameter<"IntegerAttr", "1">: $array_length,
+ OptionalParameter<"BoolAttr", "true">: $boundary_check
+ );
+
+ let builders = [
+ AttrBuilder<(ins
+ CArg<"xegpu::MemoryScope", "xegpu::MemoryScope::Global">:$memory_scope,
+ CArg<"int", "1">:$array_length,
+ CArg<"bool", "true">: $boundary_check
+ )>
+ ];
+
+ let assemblyFormat = "`<` struct(params) `>`";
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU Memory Scope Enums.
+//===----------------------------------------------------------------------===//
+def XeGPU_MemoryScopeGlobal: I32EnumAttrCase<"Global", 0, "global">;
+def XeGPU_MemoryScopeShared: I32EnumAttrCase<"SLM", 1, "slm">;
+def XeGPU_MemoryScope: I32EnumAttr<"MemoryScope",
+ "The address space of the memory the tensor descritor is created for",
+ [XeGPU_MemoryScopeGlobal, XeGPU_MemoryScopeShared]> {
+ let genSpecializedAttr = 0;
+ let cppNamespace = "::mlir::xegpu";
+}
+
+def XeGPU_MemoryScopeAttr:
+ EnumAttr<XeGPU_Dialect, XeGPU_MemoryScope, "memory_scope"> {
+ let assemblyFormat = "$value";
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU Cache Enums.
+//===----------------------------------------------------------------------===//
+def XeGPU_CachePolicyCached: I32EnumAttrCase<"CACHED", 0, "cached">; // valid for read and write
+def XeGPU_CachePolicyUncached: I32EnumAttrCase<"UNCACHED", 1, "uncached">; // valid for read and write
+def XeGPU_CachePolicyStreaming: I32EnumAttrCase<"STREAMING", 2, "streaming">; // valid for read only
+def XeGPU_CachePolicyInvalid: I32EnumAttrCase<"READ_INVALIDATE", 3, "read_invalidate">; // valid for read only
+def XeGPU_CachePolicyWriteBack: I32EnumAttrCase<"WRITE_BACK", 4, "write_back">; // valid for write only
+def XeGPU_CachePolicyWriteThrough: I32EnumAttrCase<"WRITE_THROUGH", 5, "write_through">; // valid for write only
+
+def XeGPU_CachePolicyEnums : I32EnumAttr<"CachePolicy", "Cache policy",
+ [XeGPU_CachePolicyCached, XeGPU_CachePolicyUncached,
+ XeGPU_CachePolicyStreaming, XeGPU_CachePolicyInvalid,
+ XeGPU_CachePolicyWriteBack, XeGPU_CachePolicyWriteThrough]> {
+ let genSpecializedAttr = 0;
+ let cppNamespace = "::mlir::xegpu";
+}
+
+def XeGPU_CacheHintAttr
+ : EnumAttr<XeGPU_Dialect, XeGPU_CachePolicyEnums, "cache_hint"> {
+ let assemblyFormat = "`<` $value `>`";
+}
+
+
+
#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td
index 3851275ad30a0a..c2f09319c790e0 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td
@@ -23,8 +23,8 @@ def XeGPU_Dialect : Dialect {
the lower-level GPU compiler.
}];
- // let useDefaultTypePrinterParser = true;
- // let useDefaultAttributePrinterParser = true;
+ let useDefaultTypePrinterParser = true;
+ let useDefaultAttributePrinterParser = true;
}
#endif // MLIR_DIALECT_XEGPU_IR_XEGPUDIALECT_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
index 5825ef9195b03f..9d37d77e03a0c5 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -12,6 +12,22 @@
include "mlir/Dialect/XeGPU/IR/XeGPUAttrs.td"
include "mlir/Dialect/XeGPU/IR/XeGPUDialect.td"
include "mlir/Dialect/XeGPU/IR/XeGPUTypes.td"
+include "mlir/Interfaces/SideEffectInterfaces.td"
+include "mlir/IR/AttrTypeBase.td"
+
+
+include "mlir/IR/OpBase.td"
+include "mlir/IR/OpAsmInterface.td"
+include "mlir/IR/AttrTypeBase.td"
+include "mlir/IR/BuiltinTypes.td"
+include "mlir/IR/BuiltinTypeInterfaces.td"
+include "mlir/Interfaces/SideEffectInterfaces.td"
+include "mlir/Interfaces/ViewLikeInterface.td"
+include "mlir/Interfaces/CastInterfaces.td"
+include "mlir/Interfaces/ControlFlowInterfaces.td"
+include "mlir/Interfaces/CopyOpInterface.td"
+include "mlir/Interfaces/InferTypeOpInterface.td"
+include "mlir/Interfaces/ShapedOpInterfaces.td"
// Base class for dialect operations. This operation inherits from the base
@@ -23,4 +39,199 @@ class XeGPU_Op<string mnemonic, list<Trait> traits = []>:
Op<XeGPU_Dialect, mnemonic, traits>;
+def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, AttrSizedOperandSegments]> {
+
+ let summary = "create nd tensor descriptor operation";
+ let description = [{
+ The "create_nd_tdesc" operation creates a TensorDescType which represents
+ a sub-view of a 2D memory region (It can be extended to support N-D memory
+ region if needed in future). Elements in the subview continuous in each
+ dimention. It encodes the following important information for supporting
+ Intel hardware features:
+
+ * source: an object representing (starting address/pointer of) a 2D memory region.
+ It can be either a 2D memref object, or simply a pointer represented by uint64_t type.
+ for the later case, the shape and layout information of the 2D memory region should
+ be explicitly passed via `dynamic_shape` and `dynamic_strides` parameters.
+ * offsets: two index values represents offsets from the "source" at the each dimension
+ at which the subview of the target memory will be created. It is encoded via two
+ variables, including "dynamic_offsets" and "static_offsets", such that it can
+ accept various forms, such as, operands (e.g., [%c0, %c]) and attributes (e.g., [2, 4])).
+ * shape: the shape information of the memory region pointed by the "source". It is
+ typically encoded via the MemRefType of the source, e.g., memref<4096x4096xf16>.
+ But if "source" is simply a pointer represented as uint64_t type, or a memref
+ type without shape information e.g., memref<?x?xf16>, the shape information has
+ to be explicitly passed via the "dynamic_shape" argument. Currently "dynamic_shape"
+ only accepts operands(e.g., [%c4096, %c4096]), not attributes(e.g., [4096, 4096]).
+ * strides: the strides of the memory region pointed by the "source". Similar to shape,
+ it is typically encoded via the MemRefType of the source too. But if "source" is
+ simply a pointer represented as uint64_t type, or a memref type without shape
+ information e.g., memref<?x?xf16>, the strides information has to be explicitly
+ passed via the "dynamic_strides" argument. And it currently only accepts operands two.
+
+ Example 1 (suppose the tensor shape inferred by the compiler is 8x16):
+ %0 = memref.alloc() : memref<1024x1024xf32>
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %1 = xegpu.create_nd_tdesc %0[%c0, %c0]: memref<1024x1024xf32> -> TensorDesc<8x16xf32>
+
+ Example 2 (suppose the tensor shape inferred by the compiler is 8x16):
+ %0 = memref.alloc(%h, %w) : memref<?x?xf32>
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %1 = xegpu.create_nd_tdesc %0[%c0, %c0], [%h, %w], [%w, %c1]: memref<?x?xf32> -> TensorDesc<8x16xf32>
+
+ Example 3 (suppose the tensor shape inferred by the compiler is 8x16):
+ %0 = ... : ui64
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %1 = xegpu.create_nd_tdesc %0[%c0, %c0], [%h, %w], [%w, %c1]: ui64 -> TensorDesc<8x16xf32>
+ }];
+
+ let arguments = (ins
+ XeGPU_BaseAddrType: $source,
+ Variadic<Index>: $dynamic_offsets,
+ Variadic<Index>: $dynamic_shape,
+ Variadic<Index>: $dynamic_strides,
+ DenseI64ArrayAttr: $static_offsets
+ );
+ let results = (outs XeGPU_TensorDesc: $TensorDesc);
+
+ let assemblyFormat = [{
+ $source ``
+ custom<DynamicIndexList>($dynamic_offsets, $static_offsets)
+ (`,` `[` $dynamic_shape^ `]` `,` `[` $dynamic_strides `]`)?
+ attr-dict `:` type($source) `->` qualified(type($TensorDesc))
+ }];
+ let skipDefaultBuilders = 1;
+ let hasVerifier = 1;
+
+ let builders = [
+ OpBuilder<(ins "Type": $TensorDesc, "Value": $source, "ValueRange": $offsets,
+ "ValueRange": $shape, "ValueRange": $strides,
+ "llvm::ArrayRef<int64_t>": $static_offsets)>,
+
+ OpBuilder<(ins "Type": $tdesc, "Value": $source,
+ "llvm::ArrayRef<OpFoldResult>": $offsets)>,
+
+ OpBuilder<(ins "Type": $tdesc, "Value": $source,
+ "llvm::ArrayRef<OpFoldResult>": $offsets,
+ "ValueRange": $shape, "ValueRange": $stride)>
+ ];
+
+ let extraClassDeclaration = [{
+ /// Returns the type of the source memref operand.
+ Type getSourceType() {
+ return getSource().getType();
+ }
+
+ /// Returns the type of the result TensorDesc.
+ xegpu::TensorDescType getType() {
+ return getTensorDesc().getType();
+ }
+
+ /// Returns the offsets info to the source. It consolidates
+ /// information from both dynamic_offsets and static_offsets
+ /// parameters. static_offsets parameter always has the expected
+ /// ranks with some dim could have ShapeType::kDynamic value
+ /// indicating the corresponding value should be from dynamic_offsets.
+ llvm::SmallVector<OpFoldResult> getOffsets();
+
+ /// returns the shape info of the source. It is either from the
+ /// memref type, if source is a memref with static shape
+ /// information or from the dynamic_shape parameter. If both
+ /// exists, the dynamic_shape parameter will be used and the
+ /// shape information from memref type will be ignored.
+ llvm::SmallVector<OpFoldResult> getShape();
+
+ /// returns the strides info of the source. It is either from the
+ /// memref type, if source is a memref with static shape
+ /// information or from the dynamic_stride parameter. If both
+ /// exists, the dynamic_strides parameter will be used and the
+ /// strides information from memref type will be ignored.
+ llvm::SmallVector<OpFoldResult> getStrides();
+
+ /// Return the element type of the TensorDesc
+ Type getElementType() {
+ return getType().getElementType();
+ }
+
+ /// Return the shape of the TensorDesc
+ llvm::ArrayRef<int64_t> getTensorDescShape() {
+ return getType().getShape();
+ }
+ }];
+}
+
+def XeGPU_PrefetchNdOp : XeGPU_Op<"prefetch_nd", []> {
+ let summary = "prefetches a nD block to cache";
+ let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
+
+ // Format: xegpu.prefetch_nd %tdesc {l1_hint = #xegpu.cache_hint<cached>,
+ // l2_hint = #xegpu.cache_hint<cached>,
+ // l3_hint = #xegpu.cache_hint<cached>}
+ // : !xegpu.tensor_desc<8x16xf16>
+ let assemblyFormat = "$TensorDesc attr-dict `:` qualified(type($TensorDesc))";
+}
+
+
+def XeGPU_LoadNDOp : XeGPU_Op<"load_nd"> {
+ let summary = "loads a n-D block from memory (represented by TensorDesc)"
+ "to registers (represented by vector)";
+ let description = [{
+ LoadNDOp essentially mimics the hardware block read instruction to read
+ a block of data from memory to register. It takes a set of cache hints
+ for each level of cache, L1, L2 and L3. If hardware does not have a
+ correspoding cache, Corresponding cache hint attribute will be masked.
+ If both transpose and vnni_axis present at the same time. It assume to
+ perform transpose first and then vnni transform.
+ }];
+
+ let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+ OptionalAttr<I64Attr>: $vnni_axis,
+ OptionalAttr<DenseI64ArrayAttr>: $transpose,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
+
+ let results = (outs XeGPU_ValueType: $value);
+
+ let extraClassDeclaration = [{
+ VectorType getType() {
+ return llvm::dyn_cast<VectorType>(getValue().getType());
+ }
+
+ xegpu::TensorDescType getTensorDescType() {
+ return getTensorDesc().getType();
+ }
+ }];
+
+ // Format: xegpu.load_nd %1 {transpose = [1, 0],
+ // l1_hint = #xegpu.cache_hint<cached>,
+ // l2_hint = #xegpu.cache_hint<uncached>,
+ // l3_hint = #xegpu.cache_hint<streaming>}
+ // : !xegpu.tensor_desc<8x16xf32> -> vector<16x8xf32>
+ let assemblyFormat = "$TensorDesc attr-dict `:` qualified(type($TensorDesc)) `->` type($value)";
+ let hasVerifier = 1;
+}
+
+def XeGPU_StoreNDOp : XeGPU_Op<"store_nd", []> {
+ let summary = "stores a n-D block register region back to memory, currently only supports 2D";
+ let arguments = (ins XeGPU_ValueType: $value,
+ XeGPU_TensorDesc: $TensorDesc,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l1_hint,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
+ OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
+
+ // Format: xegpu.store_nd %3, %2 {l1_hint = #xegpu.cache_hint<uncached>,
+ // l2_hint = #xegpu.cache_hint<write_back>,
+ // l3_hint = #xegpu.cache_hint<write_through>}
+ // : vector<8x16xf16>, !xegpu.tensor_desc<8x16xf16>
+ let assemblyFormat = "$value `,` $TensorDesc attr-dict `:` type($value) `,` qualified(type($TensorDesc))";
+ let hasVerifier = 1;
+}
+
#endif // MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
index 1d75bb4e2906fe..36b04ea12bcad0 100644
--- a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -9,9 +9,9 @@
#ifndef MLIR_DIALECT_XEGPU_IR_XEGPUTYPES_TD
#define MLIR_DIALECT_XEGPU_IR_XEGPUTYPES_TD
-include "mlir/IR/BuiltinTypes.td"
include "mlir/Dialect/XeGPU/IR/XeGPUAttrs.td"
include "mlir/Dialect/XeGPU/IR/XeGPUDialect.td"
+include "mlir/IR/BuiltinTypes.td"
def XeGPU_IntType: AnyTypeOf<[I1, I8, I16, I32, I64, SI1, SI8, SI16, SI32, SI64, UI1, UI8, UI16, UI32, UI64]>;
def XeGPU_FloatType: AnyTypeOf<[F16, F32, F64, BF16, TF32]>;
@@ -30,4 +30,106 @@ class XeGPUTypeDef<string name, string typeMnemonic, list<Trait> traits = [],
let mnemonic = typeMnemonic;
}
+def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
+ [ShapedTypeInterface], "::mlir::TensorType"> {
+ let summary = "TensorDesc describing regions of interested data.";
+ let description = [{
+ TensorDesc is a type designed to describe regions of the interested data as well as some
+ features that are unique to Intel hardware. Different with the builtin tensor type in MLIR,
+ it essentially only contains the meta data, and doesn't hold the data by itself. It is designed
+ to mainly support 2d block load/store and DPAS (matrix multiplication instruction) on Intel GPU.
+ It encodes the following information:
+
+ * shape: the sizes/shape of the intereted data block, e.g., 8x16 means 8 rows
+ and each row contains 16 continious data element. The rows could be
+ either continuous or not, depends on whether the encoding attribute
+ is set or not.
+ * element_type: the data type of the data element, e.g., f16, f32.
+
+ Similar to the builtin tensor, it also provides an optinal attribute to encoding
+ the following information via the TensorDescAttr object:
+ * memory_scope (xegpu::MemoryScope): [optional] where the data is located,
+ global memory or shared memory. It is default to Global.
+ * array_length (int): [optional] The number of continuous blocks with size as `shape`,
+ that will be loaded by block load at a time. It is default to 1.
+ * boundary_check (bool): [optional] indicates whether the operation detects the boundary
+ and pads with zero for out-of-boundary access. It is default to do boundary check.
+
+
+ Syntax:
+
+ ```
+ TensorDesc-type ::= `tensor_desc` `<` dim-list element-type (attr-list)? `>`
+ element-type ::= float-type | integer-type | index-type
+ dim-list := (static-dim-list `x`)?
+ static-dim-list ::= decimal-literal `x` decimal-literal
+ attr-list = (, memory_scope = value)? (, arr_len = value)? (, boundary_check = value)?
+ ```
+
+ Examples:
+
+ ```mlir
+ // A block TensorDesc with 8x16 i32 elements
+ xegpu.tensor_desc<8x16xi32>
+
+ // A block TensorDesc with 8x16 f32 elements
+ xegpu.tensor_desc<8x16xf32>
+
+ // A TensorDesc with 8x16 f32 elements for a memory region in shared memory space.
+ xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+ ```
+ }];
+
+ let parameters = (ins ArrayRefParameter<"int64_t">: $shape,
+ "mlir::Type": $elementType,
+ OptionalParameter<"mlir::Attribute">: $encoding);
+
+ let extraClassDeclaration = [{
+ using TensorType::clone;
+ using mlir::ShapedType::Trait<TensorDescType>::getElementTypeBitWidth;
+ using mlir::ShapedType::Trait<TensorDescType>::getRank;
+ using mlir::ShapedType::Trait<TensorDescType>::getNumElements;
+ using mlir::ShapedType::Trait<TensorDescType>::isDynamicDim;
+ using mlir::ShapedType::Trait<TensorDescType>::hasStaticShape;
+ using mlir::ShapedType::Trait<TensorDescType>::getNumDynamicDims;
+ using mlir::ShapedType::Trait<TensorDescType>::getDimSize;
+ using mlir::ShapedType::Trait<TensorDescType>::getDynamicDimIndex;
+
+ TensorDescType clone(::mlir::Type elementType) {
+ return llvm::cast<TensorDescType>(cloneWith(getShape(), elementType));
+ }
+
+ TensorDescAttr getEncodingAsTensorDescAttr() const {
+ return llvm::dyn_cast_if_present<TensorDescAttr>(getEncoding());
+ }
+
+ xegpu::MemoryScope getMemoryScope() const {
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getMemoryScope())
+ return attr.getMemoryScope().getValue();
+ // return default value
+ return MemoryScope::Global;
+ }
+
+ int getArrayLength() {
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getArrayLength())
+ return attr.getArrayLength().getInt();
+ // return default value
+ return 1;
+ }
+
+ bool getBoundaryCheck() {
+ auto attr = getEncodingAsTensorDescAttr();
+ if (attr && attr.getBoundaryCheck())
+ return attr.getBoundaryCheck().getValue();
+ // return default value
+ return true;
+ }
+ }];
+
+ let hasCustomAssembly...
[truncated]
|
@@ -23,4 +39,199 @@ class XeGPU_Op<string mnemonic, list<Trait> traits = []>: | |||
Op<XeGPU_Dialect, mnemonic, traits>; | |||
|
|||
|
|||
def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, AttrSizedOperandSegments]> { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think it could benefit from OffsetSizeAndStrideOpInterface
to take advantage of the existing helpers and streamline offset and stride handling.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@adam-smnk I added it and ViewLikeOpInterface
too. It is slightly different from some tensor ops, in that it doesn't have static_sizes
and static_strides
arguments, instead they are either from source if it is MemRefType or array of ShapedType::kDynamic
.
let summary = "create nd tensor descriptor operation"; | ||
let description = [{ | ||
The "create_nd_tdesc" operation creates a TensorDescType which represents | ||
a sub-view of a 2D memory region (It can be extended to support N-D memory |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Perhaps ViewLikeOpInterface
would fit too?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@adam-smnk thank for your feedback. See above comments.
let summary = "create nd tensor descriptor operation"; | ||
let description = [{ | ||
The "create_nd_tdesc" operation creates a TensorDescType which represents | ||
a sub-view of a 2D memory region (It can be extended to support N-D memory |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As per XeGPU_BaseAddrType
, 1D memref is also accepted and verifier also doesn't complain.
Which behavior is intended?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We also have a set of scattered operators, which are its users. The PR for them is coming after this one. But I updated the verfier based on your feedback. Thanks
} | ||
|
||
def XeGPU_PrefetchNdOp : XeGPU_Op<"prefetch_nd", []> { | ||
let summary = "prefetches a nD block to cache"; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: unify "nD/n-D/N-D block" style
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@adam-smnk Thanks, I updated them
and each row contains 16 continious data element. The rows could be | ||
either continuous or not, depends on whether the encoding attribute |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
nit: continuous -> contiguous
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@adam-smnk Thanks, they are fixed now.
// l2_hint = #xegpu.cache_hint<cached>, | ||
// l3_hint = #xegpu.cache_hint<cached>} | ||
// : !xegpu.tensor_desc<8x16xf16> | ||
let assemblyFormat = "$TensorDesc attr-dict `:` qualified(type($TensorDesc))"; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you always split prop-dict
out of attr-dict
? We're trying to deprecate merging the two (it's a slow progress...)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi @joker-eph, thanks for the feedback. This is my first time to hear about this, I find some simple examples but didn't find related document about how it works. Do you mind sharing some ideas or docs, if have, about it?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@joker-eph never mind, I got some idea from your RFC https://discourse.llvm.org/t/rfc-introducing-mlir-operation-properties/67846, shared by my colleague
// Format: xegpu.store_nd %3, %2 {l1_hint = #xegpu.cache_hint<uncached>, | ||
// l2_hint = #xegpu.cache_hint<write_back>, | ||
// l3_hint = #xegpu.cache_hint<write_through>} | ||
// : vector<8x16xf16>, !xegpu.tensor_desc<8x16xf16> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This kind of format is better provided as markdown examples in the let description =
field (so it shows up on the website as well).
(like you did for the XeGPU_TensorDesc
type below)
Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for the tweaks.
Looks pretty good 👍
This reverts commit daebe5c.
This reverts commit daebe5c. This commit causes the following asan issue: ``` <snip>/llvm-project/build/bin/mlir-opt <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir | <snip>/llvm-project/build/bin/FileCheck <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir # executed command: <snip>/llvm-project/build/bin/mlir-opt <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir # .---command stderr------------ # | ================================================================= # | ==2772558==ERROR: AddressSanitizer: stack-use-after-return on address 0x7fd2c2c42b90 at pc 0x55e406d54614 bp 0x7ffc810e4070 sp 0x7ffc810e4068 # | READ of size 8 at 0x7fd2c2c42b90 thread T0 # | #0 0x55e406d54613 in operator()<long int const*> /usr/include/c++/13/bits/predefined_ops.h:318 # | #1 0x55e406d54613 in __count_if<long int const*, __gnu_cxx::__ops::_Iter_pred<mlir::verifyListOfOperandsOrIntegers(Operation*, llvm::StringRef, unsigned int, llvm::ArrayRef<long int>, ValueRange)::<lambda(int64_t)> > > /usr/include/c++/13/bits/stl_algobase.h:2125 # | #2 0x55e406d54613 in count_if<long int const*, mlir::verifyListOfOperandsOrIntegers(Operation*, ... ```
One nit: please make sure your commit messages are clean before landing, see how it shows up after landing for example here: daebe5c |
@joker-eph Ah, I am very sorry about it. I am going to fix it and will be very careful in the future. |
This PR adds XeGPU 2D block operators. It contains: 1. `TensorDescType` and `TensorDescAttr` definitions 2. `MemoryScopeAttr` and `CacheHintAttr` definitions which are used by `TensorDescAttr`. 3. `CreateNdDescOp`, `PrefetchNdOp`, `LoadNdOp`, and `StoreNdOp` definitions, and their corresponding testcases for illustration. --------- Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
…lvm#85653) This reverts commit daebe5c. This commit causes the following asan issue: ``` <snip>/llvm-project/build/bin/mlir-opt <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir | <snip>/llvm-project/build/bin/FileCheck <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir # executed command: <snip>/llvm-project/build/bin/mlir-opt <snip>/llvm-project/mlir/test/Dialect/XeGPU/XeGPUOps.mlir # .---command stderr------------ # | ================================================================= # | ==2772558==ERROR: AddressSanitizer: stack-use-after-return on address 0x7fd2c2c42b90 at pc 0x55e406d54614 bp 0x7ffc810e4070 sp 0x7ffc810e4068 # | READ of size 8 at 0x7fd2c2c42b90 thread T0 # | #0 0x55e406d54613 in operator()<long int const*> /usr/include/c++/13/bits/predefined_ops.h:318 # | #1 0x55e406d54613 in __count_if<long int const*, __gnu_cxx::__ops::_Iter_pred<mlir::verifyListOfOperandsOrIntegers(Operation*, llvm::StringRef, unsigned int, llvm::ArrayRef<long int>, ValueRange)::<lambda(int64_t)> > > /usr/include/c++/13/bits/stl_algobase.h:2125 # | #2 0x55e406d54613 in count_if<long int const*, mlir::verifyListOfOperandsOrIntegers(Operation*, ... ```
pickup llvm#84692 with asan fix. --------- Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
Hi @joker-eph, This PR adds XeGPU 2D block operators. It contains:
TensorDescType
andTensorDescAttr
definitionsMemoryScopeAttr
andCacheHintAttr
definitions which are used byTensorDescAttr
.CreateNdDescOp
,PrefetchNdOp
,LoadNdOp
, andStoreNdOp
definitions, and their corresponding testcases for illustration.