Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MHLO] Add convolution op pattern #1152

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
171 changes: 171 additions & 0 deletions lib/Conversion/TorchToMhlo/Linear.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -379,6 +379,171 @@ class ConvertAtenLinearOp : public ConvertAtenMatmulBaseOp<AtenOpT> {

} // namespace

// AtenConvolutionOp
namespace {
class ConvertAtenConvlutionOp : public OpConversionPattern<AtenConvolutionOp> {
public:
using OpConversionPattern<AtenConvolutionOp>::OpConversionPattern;
using OpAdaptor = typename AtenConvolutionOp::Adaptor;

LogicalResult
matchAndRewrite(AtenConvolutionOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value input = adaptor.input();
Value weight = adaptor.weight();

// The input shape is [N, C, H, W]
auto inputTy = input.getType().template cast<RankedTensorType>();
// The weight shape is [OC, (IC // groups), KH, KW]
// If tranposed is set to true, the weight shape changes to [IC, (OC //
// groups), KH, KW]
auto weightTy = weight.getType().template cast<RankedTensorType>();
auto outTy = getTypeConverter()
->convertType(op.getType())
.template cast<RankedTensorType>();

if (!inputTy || !weightTy || !outTy) {
return op.emitError("input, weight and output must be ranked tensors");
}

if (inputTy.getRank() < 3)
return op.emitError("only input with at least 3 dims valid");

SmallVector<int64_t> stride;
if (!matchPattern(op.stride(), m_TorchConstantIntList(stride))) {
return rewriter.notifyMatchFailure(op,
"non-const stride list unsupported");
}

SmallVector<int64_t> padding;
if (!matchPattern(op.padding(), m_TorchConstantIntList(padding))) {
return rewriter.notifyMatchFailure(op,
"non-const padding list unsupported");
}

SmallVector<int64_t> dilation;
if (!matchPattern(op.dilation(), m_TorchConstantIntList(dilation))) {
return rewriter.notifyMatchFailure(op,
"non-const dilation list unsupported");
}
SmallVector<int64_t> outputPadding;
if (!matchPattern(op.output_padding(),
m_TorchConstantIntList(outputPadding))) {
return rewriter.notifyMatchFailure(
op, "non-const output_padding list unsupported");
}
// Just ignore the outputPadding attribute
for (int64_t item : outputPadding) {
if (item != 0)
return rewriter.notifyMatchFailure(
op, "only zero output_padding list supported");
}

int64_t groups;
if (!matchPattern(op.groups(), m_TorchConstantInt(&groups))) {
return rewriter.notifyMatchFailure(op, "non-int groups unsupported");
}

bool transposed;
if (!matchPattern(op.transposed(), m_TorchConstantBool(&transposed))) {
return rewriter.notifyMatchFailure(op, "non-bool transposed unsupported");
}
if (transposed) {
return rewriter.notifyMatchFailure(
op, "only param tranposed of value 'false' supported!");
}

assert(padding.size() == dilation.size() &&
padding.size() == stride.size() &&
padding.size() == static_cast<size_t>(inputTy.getRank()) - 2);
int64_t nSpatialDims = padding.size();

// Get mhlo::ConvolutionOp attributes
DenseIntElementsAttr mhloWindowStride = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<long int>(stride.size())},
rewriter.getI64Type()),
stride);
std::vector<int64_t> mhloPaddingVec;
for (size_t i = 0; i < padding.size(); i++) {
mhloPaddingVec.emplace_back(padding[i]);
mhloPaddingVec.emplace_back(padding[i]);
}

DenseIntElementsAttr mhloPadding = DenseIntElementsAttr::get(
RankedTensorType::get(
{static_cast<long int>(padding.size()), static_cast<long int>(2)},
rewriter.getI64Type()),
mhloPaddingVec);

DenseIntElementsAttr mhloRhsDilation = DenseIntElementsAttr::get(
RankedTensorType::get({static_cast<long int>(dilation.size())},
rewriter.getI64Type()),
dilation);

SmallVector<int64_t> spatialDimensions;
for (int64_t i = 2; i < inputTy.getRank(); i++) {
spatialDimensions.emplace_back(i);
}
mhlo::ConvDimensionNumbersAttr dimensionNumbers =
mhlo::ConvDimensionNumbersAttr::get(
/*context=*/rewriter.getContext(), /*inputBatchDimension=*/0,
/*inputFeatureDimension=*/1,
/*inputSpatialDimensions=*/spatialDimensions,
/*kernelInputFeatureDimension=*/1,
/*kernelOutputFeatureDimension=*/0,
/*kernelSpatialDimensions=*/spatialDimensions,
/*outputBatchDimension=*/0, /*outputFeatureDimension=*/1,
/*outputSpatialDimensions=*/spatialDimensions);

IntegerAttr featureGroupCount =
IntegerAttr::get(rewriter.getI64Type(), groups);
IntegerAttr batchGroupCount = IntegerAttr::get(rewriter.getI64Type(), 1);

// mhlo::ConvolutionOp's optional attributes, leave them as default
DenseIntElementsAttr mhloLhsDilation;
DenseElementsAttr windowReversal;
ArrayAttr precisionConfig;

auto mhloConvOp = rewriter.create<mhlo::ConvolutionOp>(
op->getLoc(), outTy, input, weight, mhloWindowStride, mhloPadding,
mhloLhsDilation, mhloRhsDilation, windowReversal, dimensionNumbers,
featureGroupCount, batchGroupCount, precisionConfig);

auto bias = adaptor.bias();

// No bias provided
if (failed(checkNotNone(rewriter, op, op.bias()))) {
rewriter.replaceOp(op, mhloConvOp.getResult());
return success();
}

// Handle bias
if (!bias.getType().cast<RankedTensorType>()) {
return op.emitError("bias provided but not a ranked tensor");
}

auto biasTy = bias.getType().template cast<RankedTensorType>();
if (!biasTy.getElementType().isIntOrFloat()) {
return op.emitError("only floating-point or integer datatype "
"legalization for bias supported");
}

assert(biasTy.getRank() <= 1);

// Reshape and promote bias
auto inputUnsqzDims =
llvm::to_vector<4>(llvm::seq<int64_t>(-nSpatialDims, 0));
bias = *mhlo::unsqueezeTensor(rewriter, op, bias, inputUnsqzDims);
bias = mhlo::promoteType(rewriter, bias, outTy);

DenseIntElementsAttr bcastDimensions;
rewriter.replaceOpWithNewOp<chlo::BroadcastAddOp>(
op, outTy, mhloConvOp.getResult(), bias, bcastDimensions);
return success();
}
};
} // namespace

void mlir::torch::torch_to_mhlo::populateLinearOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
Expand All @@ -402,4 +567,10 @@ void mlir::torch::torch_to_mhlo::populateLinearOpPatternsAndLegality(
patterns.add<ConvertAtenLinearOp<AtenOp>>(typeConverter, context);
INSERT_LINEAR_ATENOP_PATTERN(AtenLinearOp);
#undef INSERT_LINEAR_ATEMOP_PATTERN

#define INSERT_CONVOLUTION_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenConvlutionOp>(typeConverter, context);
INSERT_CONVOLUTION_ATENOP_PATTERN(AtenConvolutionOp);
#undef INSERT_CONVOLUTION_ATENOP_PATTERN
}
79 changes: 79 additions & 0 deletions test/Conversion/TorchToMhlo/linear.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -266,3 +266,82 @@ func.func @torch.aten.mm$proj(%arg0: !torch.vtensor<[?,256],f32>) -> !torch.vten
return %1 : !torch.vtensor<[?,256],f32>
}

// -----

// CHECK-LABEL: func.func @torch.aten.convolution(
// CHECK-SAME: %[[ARG_0:.*]]: !torch.vtensor<[?,?,?,?],f32>,
// CHECK-SAME: %[[ARG_1:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
// CHECK: %[[T_0:.*]] = torch_c.to_builtin_tensor %[[ARG_0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor<?x?x?x?xf32>
// CHECK: %[[T_1:.*]] = torch_c.to_builtin_tensor %[[ARG_1]] : !torch.vtensor<[?,?,?,?],f32> -> tensor<?x?x?x?xf32>
// CHECK: %[[T_2:.*]] = torch.constant.none
// CHECK: %[[T_4:.*]] = torch.constant.int 2
// CHECK: %[[T_5:.*]] = torch.constant.int 1
// CHECK: %[[T_6:.*]] = torch.constant.int 4
// CHECK: %[[T_7:.*]] = torch.constant.int 3
// CHECK: %[[T_8:.*]] = torch_c.to_i64 %[[T_7]]
// CHECK: %[[T_9:.*]] = torch.prim.ListConstruct %[[T_4]], %[[T_5]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T_10:.*]] = torch.prim.ListConstruct %[[T_6]], %[[T_4]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T_11:.*]] = torch.prim.ListConstruct %[[T_7]], %[[T_5]] : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T_12:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[T_13:.*]] = torch.constant.bool false
// CHECK: %[[T_14:.*]] = mhlo.convolution(%[[T_0]], %[[T_1]])
// CHECK-SAME{LITERAL}: dim_numbers = [b, f, 0, 1]x[o, i, 0, 1]->[b, f, 0, 1], window = {stride = [2, 1], pad = [[4, 4], [2, 2]], rhs_dilate = [3, 1]} {batch_group_count = 1 : i64, feature_group_count = 3 : i64} : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[T_15:.*]] = torch_c.from_builtin_tensor %[[T_14]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32>
// CHECK: return %[[T_15]] : !torch.vtensor<[?,?,?,?],f32>
func.func @torch.aten.convolution(%arg0: !torch.vtensor<[?,?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
%none = torch.constant.none
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%int4 = torch.constant.int 4
%int3 = torch.constant.int 3
%1 = torch.prim.ListConstruct %int2, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.prim.ListConstruct %int4, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%3 = torch.prim.ListConstruct %int3, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%4 = torch.prim.ListConstruct : () -> !torch.list<int>
%false = torch.constant.bool false
%5 = torch.aten.convolution %arg0, %arg1, %none, %1, %2, %3, %false, %4, %int3 : !torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[?,?,?,?],f32>, !torch.none, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[?,?,?,?],f32>
return %5 : !torch.vtensor<[?,?,?,?],f32>
}

// -----

// CHECK-LABEL: func.func @torch.aten.convolution$bias(
// CHECK-SAME: %[[ARG_0:.*]]: !torch.vtensor<[?,?,?,?],f32>, %[[ARG_1:.*]]: !torch.vtensor<[?,?,?,?],f32>,
// CHECK-SAME: %[[ARG_2:.*]]: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
// CHECK: %[[T_0:.*]] = torch_c.to_builtin_tensor %[[ARG_0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor<?x?x?x?xf32>
// CHECK: %[[T_1:.*]] = torch_c.to_builtin_tensor %[[ARG_1]] : !torch.vtensor<[?,?,?,?],f32> -> tensor<?x?x?x?xf32>
// CHECK: %[[T_2:.*]] = torch_c.to_builtin_tensor %[[ARG_2]] : !torch.vtensor<[?],f32> -> tensor<?xf32>
// CHECK: %int2 = torch.constant.int 2
// CHECK: %int1 = torch.constant.int 1
// CHECK: %int4 = torch.constant.int 4
// CHECK: %int3 = torch.constant.int 3
// CHECK: %[[T_3:.*]] = torch_c.to_i64 %int3
// CHECK: %[[T_4:.*]] = torch.prim.ListConstruct %int2, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T_5:.*]] = torch.prim.ListConstruct %int4, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T_6:.*]] = torch.prim.ListConstruct %int3, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
// CHECK: %[[T_7:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %false = torch.constant.bool false
// CHECK: %[[T_8:.*]] = mhlo.convolution(%[[T_0]], %[[T_1]])
// CHECK{LITERAL}: dim_numbers = [b, f, 0, 1]x[o, i, 0, 1]->[b, f, 0, 1], window = {stride = [2, 1], pad = [[4, 4], [2, 2]], rhs_dilate = [3, 1]} {batch_group_count = 1 : i64, feature_group_count = 3 : i64} : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[IDX_0:.*]] = arith.constant 0 : index
// CHECK: %[[T_9:.*]] = tensor.dim %[[T_2]], %[[IDX_0]] : tensor<?xf32>
// CHECK: %[[T_10:.*]] = arith.index_cast %[[T_9]] : index to i64
// CHECK: %[[VAL_0:.*]] = arith.constant 1 : i64
// CHECK: %[[T_11:.*]] = tensor.from_elements %[[T_10]], %[[VAL_0]], %[[VAL_0]] : tensor<3xi64>
// CHECK: %[[T_12:.*]] = "mhlo.dynamic_reshape"(%[[T_2]], %[[T_11]]) : (tensor<?xf32>, tensor<3xi64>) -> tensor<?x1x1xf32>
// CHECK: %[[T_13:.*]] = chlo.broadcast_add %[[T_8]], %[[T_12]] : (tensor<?x?x?x?xf32>, tensor<?x1x1xf32>) -> tensor<?x?x?x?xf32>
// CHECK: %[[T_14:.*]] = torch_c.from_builtin_tensor %[[T_13]] : tensor<?x?x?x?xf32> -> !torch.vtensor<[?,?,?,?],f32>
// CHECK: return %[[T_14]] : !torch.vtensor<[?,?,?,?],f32>
func.func @torch.aten.convolution$bias(%arg0: !torch.vtensor<[?,?,?,?],f32>, %arg1: !torch.vtensor<[?,?,?,?],f32>, %arg2: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?,?,?,?],f32> {
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%int4 = torch.constant.int 4
%int3 = torch.constant.int 3
%1 = torch.prim.ListConstruct %int2, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.prim.ListConstruct %int4, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%3 = torch.prim.ListConstruct %int3, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%4 = torch.prim.ListConstruct : () -> !torch.list<int>
%false = torch.constant.bool false
%5 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %2, %3, %false, %4, %int3 : !torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[?],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int -> !torch.vtensor<[?,?,?,?],f32>
return %5 : !torch.vtensor<[?,?,?,?],f32>
}