Leila Mizrahi, Shyam Nandan, Stefan Wiemer 2021;
The Effect of Declustering on the Size Distribution of Mainshocks.
Seismological Research Letters; doi: https://doi.org/10.1785/0220200231
The option for (space-time-)varying completeness magnitude in the parameter inversion is described in:
Leila Mizrahi, Shyam Nandan, Stefan Wiemer 2021;
Embracing Data Incompleteness for Better Earthquake Forecasting. (Section 3.1)
Journal of Geophysical Research: Solid Earth; doi: https://doi.org/10.1029/2021JB022379
To cite the code, plase use its DOI, and cite the relevant article(s).
For more documentation on the code, see the (electronic supplement of the) articles.
For Probabilistic, Epidemic-Type Aftershock Incomplenteness, see PETAI.
In case of questions or comments, contact me: leila.mizrahi@sed.ethz.ch.
To install, run
pip install git+https://github.com/lmizrahi/etas
runnable_code/
scripts to be run for parameter inversion or catalog simulationch_forecast.py
estimates ETAS parameters and creates 100 simulations using the Swiss catalogestimate_mc.py
estimates constant completeness magnitude for a set of magnitudesinvert_etas.py
calibrates ETAS parameters based on an input catalog (option for varying mc, and option to fix certain parameters available)simulate_catalog.py
simulates a synthetic catalogsimulate_catalog_continuation.py
simulates a continuation of a catalog, after the parameters have been inverted. if you run this many times, you get a forecast. this only works if you runinvert_etas.py
beforehand.visualize_fit.py
makes plots which visualize the model fit to the data. this only works if you runinvert_etas.py
beforehand, and setstore_pij = True
.predict_etas.py
evaluates the model using the event-based log-likelihood on the test window
config/
configuration files for running the scripts inrunnable_code/
- names should be self-explanatory.
input_data/
input data to run example inversions and simulationscalifornia_shape.npy
shape of polygon around Californiach_catalog.csv
Swiss catalog 1972 - 2021, used bych_forecast.py
ch_rect.npy
shape of rectangle around Switzerlandexample_catalog.csv
to be inverted byinvert_etas.py
example_catalog_mc_var.csv
to be inverted byinvert_etas.py
when varying mc mode is usedmagnitudes.npy
example magnitudes for mc estimation
output_data/
does not contain anything.- your output goes here
etas/
- here is where all the important functions algorithms are defined