❗❗ P2PaLA is deprecated ❗❗
Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks.
💥 Try our new DEMO for online baseline detection. ❗❗
If you find this toolkit useful in your research, please cite:
@misc{p2pala2017,
author = {Lorenzo Quirós},
title = {P2PaLA: Page to PAGE Layout Analysis tookit},
year = {2017},
publisher = {GitHub},
note = {GitHub repository},
howpublished = {\url{https://github.com/lquirosd/P2PaLA}},
}
Check this paper for more details Arxiv.
- Linux (OSX may work, but untested.).
- Python (2.7, 3.6 under conda virtual environment is recomended)
- Numpy
- PyTorch (1.0). PyTorch 0.3.1 compatible on this branch
- OpenCv (3.4.5.20).
- NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN works, but is not recomended for training).
- tensorboard-pytorch (v0.9) [Optional].
pip install tensorboardX
> A diferent conda env is recomended to keep tensorflow separated from PyTorch
python setup.py install
To install python dependencies alone, use requirements file
conda env create --file conda_requirements.yml
- Input data must follow the folder structure
data_tag/page
, where images must be into thedata_tag
folder and xml files intopage
. For example:
mkdir -p data/{train,val,test,prod}/page;
tree data;
data
├── prod
│ ├── page
│ │ ├── prod_0.xml
│ │ └── prod_1.xml
│ ├── prod_0.jpg
│ └── prod_1.jpg
├── test
│ ├── page
│ │ ├── test_0.xml
│ │ └── test_1.xml
│ ├── test_0.jpg
│ └── test_1.jpg
├── train
│ ├── page
│ │ ├── train_0.xml
│ │ └── train_1.xml
│ ├── train_0.jpg
│ └── train_1.jpg
└── val
├── page
│ ├── val_0.xml
│ └── val_1.xml
├── val_0.jpg
└── val_1.jpg
- Run the tool.
python P2PaLA.py --config config.txt --tr_data ./data/train --te_data ./data/test --log_comment "_foo"
❗ Pre-trained models available here
- Use TensorBoard to visualize train status:
tensorboard --logdir ./work/runs
- xml-PAGE files must be at "./work/results/test/"
We recommend Transkribus or nw-page-editor to visualize and edit PAGE-xml files.
- For detail about arguments and config file, see docs or
python P2PaLA.py -h
. - For more detailed example see egs:
GNU General Public License v3.0 See LICENSE to see the full text.
Code is inspired by pix2pix and pytorch-CycleGAN-and-pix2pix